Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/trevorhobenshield/amazon_photos

Amazon Photos API
https://github.com/trevorhobenshield/amazon_photos

amazon amazon-photos api archive automation data

Last synced: 2 months ago
JSON representation

Amazon Photos API

Awesome Lists containing this project

README

        

# Amazon Photos API

## Table of Contents

* [Installation](#installation)
* [Setup](#setup)
* [Examples](#examples)
* [Search](#search)
* [Nodes](#nodes)
* [Restrictions](#restrictions)
* [Range Queries](#range-queries)
* [Notes](#notes)
* [Known File Types](#known-file-types)
* [Custom Image Labeling (Optional)](#custom-image-labeling-optional)

> It is recommended to use this API in a [Jupyter Notebook](https://jupyter.org/install), as the results from most
> endpoints
> are a [DataFrame](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html#pandas.DataFrame)
> which can be neatly displayed and efficiently manipulated with vectorized ops. This becomes
> increasingly important if you have "large" amounts of data (e.g. >1 million photos/videos).

## Installation

```bash
pip install amazon-photos -U
```

### Output Examples

`ap.db`

| | dateTimeDigitized | id | name | ... | model | apertureValue | focalLength | width | height | size |
|--:|:-------------------------|:-----------------------|:------------------|:----|:------------------|:--------------|:------------|------:|-------:|-------:|
| 0 | 2019-07-06T18:22:00.000Z | HeMReF-vvJiTTkdPIeWuoP | 1694252973839.png | ... | iPhone XS | 54823/32325 | 17/4 | 3024 | 4032 | 432777 |
| 1 | 2023-01-18T09:36:22.000Z | z_HiIvASAKqWmdrkjWiqMZ | 1692626817154.jpg | ... | iPhone XS | 54823/32325 | 17/4 | 3024 | 4032 | 234257 |
| 2 | 2022-08-14T14:13:21.000Z | LKXEZbqoVrhrOYBezisGEQ | 1798219686789.jpg | ... | iPhone 11 Pro Max | 54823/32325 | 17/4 | 3024 | 4032 | 423987 |
| 3 | 2020-06-28T19:32:30.000Z | EPUeciHtfKkGiYkfUyEuMa | 1593482220567.jpg | ... | iPhone XS | 54823/32325 | 17/4 | 3024 | 4032 | 898957 |
| 4 | 2021-07-07T17:12:55.000Z | fdfKzRJbEyoVeGcfCoJgE- | 1592299282720.png | ... | iPhone XR | 54823/32325 | 17/4 | 3024 | 4032 | 432556 |
| 5 | 2021-08-18T18:32:41.000Z | crskJSmKPFRhxbpfkivyLm | 1592902159105.png | ... | iPhone XR | 54823/32325 | 17/4 | 3024 | 4032 | 123123 |
| 6 | 2023-08-23T19:12:21.000Z | qkBFUlyIdkUwVVSaVWWKEF | 1598138358650.png | ... | iPhone 11 | 54823/32325 | 17/4 | 3024 | 4032 | 437887 |
| 7 | 2021-06-19T17:14:13.000Z | TXKMKC-mHvSUrtRfwmtyDe | 1622199863606.jpg | ... | iPhone 12 Pro | 14447/10653 | 21/5 | 1536 | 2048 | 758432 |
| 8 | 2023-02-15T22:45:40.000Z | FRDvvjcZdpFWiwrIZfTNHO | 1581874518054.jpg | ... | iPhone 8 Plus | 54823/32325 | 399/100 | 1348 | 2049 | 862883 |

`ap.print_tree()`

```text
~
├── Documents
├── Pictures
│ ├── iPhone
│ └── Web
│ ├── foo
│ └── bar
├── Videos
└── Backup
├── LAPTOP-XYZ
│ └── Desktop
└── DESKTOP-IJK
└── Desktop
```

## Setup

> [Update] Jan 04 2024: To avoid confusion, setting env vars is no longer supported. One must pass cookies directly as
> shown below.

Log in to Amazon Photos and copy the following cookies:

- `session-id`
- `ubid`*
- `at`*

### Canada/Europe

where `xx` is the TLD (top-level domain)

- `ubid-acbxx`
- `at-acbxx`

### United States

- `ubid_main`
- `at_main`

E.g.

```python
from amazon_photos import AmazonPhotos

ap = AmazonPhotos(
## US
# cookies={
# 'ubid_main': ...,
# 'at_main': ...,
# 'session-id': ...,
# },

## Canada
# cookies={
# 'ubid-acbca': ...,
# 'at-acbca': ...,
# 'session-id': ...,
# }

## Italy
# cookies={
# 'ubid-acbit': ...,
# 'at-acbit': ...,
# 'session-id': ...,
# }
)
```

## Examples

> A database named `ap.parquet` will be created during the initial setup. This is mainly used to reduce upload conflicts
> by checking your local file(s) md5 against the database before sending the request.

```python
from amazon_photos import AmazonPhotos

ap = AmazonPhotos(
# see cookie examples above
cookies={...},
# optionally cache all intermediate JSON responses
tmp='tmp',
# pandas options
dtype_backend='pyarrow',
engine='pyarrow',
)

# get current usage stats
ap.usage()

# get entire Amazon Photos library
nodes = ap.query("type:(PHOTOS OR VIDEOS)")

# query Amazon Photos library with more filters applied
nodes = ap.query("type:(PHOTOS OR VIDEOS) AND things:(plant AND beach OR moon) AND timeYear:(2023) AND timeMonth:(8) AND timeDay:(14) AND location:(CAN#BC#Vancouver)")

# sample first 10 nodes
node_ids = nodes.id[:10]

# move a batch of images/videos to the trash bin
ap.trash(node_ids)

# get trash bin contents
ap.trashed()

# permanently delete a batch of images/videos
ap.delete(node_ids)

# restore a batch of images/videos from the trash bin
ap.restore(node_ids)

# upload media (preserves local directory structure and copies to Amazon Photos root directory)
ap.upload('path/to/files')

# download a batch of images/videos
ap.download(node_ids)

# convenience method to get photos only
ap.photos()

# convenience method to get videos only
ap.videos()

# get all identifiers calculated by Amazon.
ap.aggregations(category="all")

# get specific identifiers calculated by Amazon.
ap.aggregations(category="location")
```

## Search

*Undocumented API, current endpoints valid Dec 2023.*

For valid **location** and **people** IDs, see the results from the `aggregations()` method.

| name | type | description |
|:----------------|:-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ContentType | str | `"JSON"` |
| _ | int | `1690059771064` |
| asset | str | `"ALL"`
`"MOBILE"`
`"NONE`
`"DESKTOP"`

default: `"ALL"` |
| filters | str | `"type:(PHOTOS OR VIDEOS) AND things:(plant AND beach OR moon) AND timeYear:(2019) AND timeMonth:(7) AND location:(CAN#BC#Vancouver) AND people:(CyChdySYdfj7DHsjdSHdy)"`

default: `"type:(PHOTOS OR VIDEOS)"` |
| groupByForTime | str | `"day"`
`"month"`
`"year"` |
| limit | int | `200` |
| lowResThumbnail | str | `"true"`
`"false"`

default: `"true"` |
| resourceVersion | str | `"V2"` |
| searchContext | str | `"customer"`
`"all"`
`"unknown"`
`"family"`
`"groups"`

default: `"customer"` |
| sort | str | `"['contentProperties.contentDate DESC']"`
`"['contentProperties.contentDate ASC']"`
`"['createdDate DESC']"`
`"['createdDate ASC']"`
`"['name DESC']"`
`"['name ASC']"`

default: `"['contentProperties.contentDate DESC']"` |
| tempLink | str | `"false"`
`"true"`

default: `"false"` | |

## Nodes

*Docs last updated in 2015*

| FieldName | FieldType | Sort Allowed | Notes |
|-------------------------------|--------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| isRoot | Boolean | | Only lower case `"true"` is supported. |
| name | String | Yes | This field does an exact match on the name and prefix query. Consider `node1{ "name" : "sample" }` `node2 { "name" : "sample1" }` Query filter
`name:sample` will return node1
`name:sample*` will return node1 and node2 |
| kind | String | Yes | To search for all the nodes which contains kind as FILE `kind:FILE` |
| modifiedDate | Date (in ISO8601 Format) | Yes | To Search for all the nodes which has modified from time `modifiedDate:{"2014-12-31T23:59:59.000Z" TO *]` |
| createdDate | Date (in ISO8601 Format) | Yes | To Search for all the nodes created on `createdDate:2014-12-31T23:59:59.000Z` |
| labels | String Array | | Only Equality can be tested with arrays.
if labels contains `["name", "test", "sample"]`.
Label can be searched for name or combination of values.
To get all the labels which contain name and test
`labels: (name AND test)` |
| description | String | | To Search all the nodes for description with value 'test'
`description:test` |
| parents | String Array | | Only Equality can be tested with arrays.
if parents contains `["id1", "id2", "id3"]`.
Parent can be searched for name or combination of values.
To get all the parents which contains id1 and id2
`parents:id1 AND parents:id2` |
| status | String | Yes | For searching nodes with AVAILABLE status.
`status:AVAILABLE` |
| contentProperties.size | Long | Yes | |
| contentProperties.contentType | String | Yes | If prefix query, only the major content-type (e.g. `image*`, `video*`, etc.) is supported as a prefix. |
| contentProperties.md5 | String | | |
| contentProperties.contentDate | Date (in ISO8601 Format) | Yes | RangeQueries and equals queries can be used with this field |
| contentProperties.extension | String | Yes | |

### Restrictions

> Max # of Filter Parameters Allowed is 8

| Filter Type | Filters |
|:------------|:--------------------------------------------------------------------------------------|
| Equality | createdDate, description, isRoot, kind, labels, modifiedDate, name, parentIds, status |
| Range | contentProperties.contentDate, createdDate, modifiedDate |
| Prefix | contentProperties.contentType, name |

### Range Queries

| Operation | Syntax |
|----------------------|------------------------------------------------------------------|
| GreaterThan | `{"valueToBeTested" TO *}` |
| GreaterThan or Equal | `["ValueToBeTested" TO *]` |
| LessThan | `{* TO "ValueToBeTested"}` |
| LessThan or Equal | `{* TO "ValueToBeTested"]` |
| Between | `["ValueToBeTested_LowerBound" TO "ValueToBeTested_UpperBound"]` |

## Notes

#### `https://www.amazon.ca/drive/v1/batchLink`

- This endpoint is called when downloading a batch of photos/videos in the web interface. It then returns a URL to
download a zip file, then makes a request to that url to download the content.
When making a request to download data for 1200 nodes (max batch size), it turns out to be much slower (~2.5 minutes)
than asynchronously downloading 1200 photos/videos individually (~1 minute).

### Known File Types

| Extension | Category |
|-----------|----------|
| \.pdf | pdf |
| \.doc | doc |
| \.docx | doc |
| \.docm | doc |
| \.dot | doc |
| \.dotx | doc |
| \.dotm | doc |
| \.asd | doc |
| \.cnv | doc |
| \.mp3 | mp3 |
| \.m4a | mp3 |
| \.m4b | mp3 |
| \.m4p | mp3 |
| \.wav | mp3 |
| \.aac | mp3 |
| \.aif | mp3 |
| \.mpa | mp3 |
| \.wma | mp3 |
| \.flac | mp3 |
| \.mid | mp3 |
| \.ogg | mp3 |
| \.xls | xls |
| \.xlm | xls |
| \.xll | xls |
| \.xlc | xls |
| \.xar | xls |
| \.xla | xls |
| \.xlb | xls |
| \.xlsb | xls |
| \.xlsm | xls |
| \.xlsx | xls |
| \.xlt | xls |
| \.xltm | xls |
| \.xltx | xls |
| \.xlw | xls |
| \.ppt | ppt |
| \.pptx | ppt |
| \.ppa | ppt |
| \.ppam | ppt |
| \.pptm | ppt |
| \.pps | ppt |
| \.ppsm | ppt |
| \.ppsx | ppt |
| \.pot | ppt |
| \.potm | ppt |
| \.potx | ppt |
| \.sldm | ppt |
| \.sldx | ppt |
| \.txt | txt |
| \.text | txt |
| \.rtf | txt |
| \.xml | markup |
| \.htm | markup |
| \.html | markup |
| \.zip | zip |
| \.rar | zip |
| \.7z | zip |
| \.jpg | img |
| \.jpeg | img |
| \.png | img |
| \.bmp | img |
| \.gif | img |
| \.tif | img |
| \.svg | img |
| \.mp4 | vid |
| \.m4v | vid |
| \.qt | vid |
| \.mov | vid |
| \.mpg | vid |
| \.mpeg | vid |
| \.3g2 | vid |
| \.3gp | vid |
| \.flv | vid |
| \.f4v | vid |
| \.asf | vid |
| \.avi | vid |
| \.wmv | vid |
| \.swf | exe |
| \.exe | exe |
| \.dll | exe |
| \.ax | exe |
| \.ocx | exe |
| \.rpm | exe |

## Custom Image Labeling (Optional)

Categorize your images into folders using computer vision models.

```bash
pip install amazon-photos[extras] -U
```

See the [Model List](https://www.hobenshield.com/stats/bench/index.html) for a list of all available models.

### Sample Models

**Very Large**

```
eva02_base_patch14_448.mim_in22k_ft_in22k_in1k
```

**Large**

```
eva02_large_patch14_448.mim_m38m_ft_in22k_in1k
```

**Medium**

```
eva02_small_patch14_336.mim_in22k_ft_in1k
vit_base_patch16_clip_384.laion2b_ft_in12k_in1k
vit_base_patch16_clip_384.openai_ft_in12k_in1k
caformer_m36.sail_in22k_ft_in1k_384
```

**Small**

```
eva02_tiny_patch14_336.mim_in22k_ft_in1k
tiny_vit_5m_224.dist_in22k_ft_in1k
edgenext_small.usi_in1k
xcit_tiny_12_p8_384.fb_dist_in1k
```

```python
run(
'eva02_base_patch14_448.mim_in22k_ft_in22k_in1k',
path_in='images',
path_out='labeled',
thresh=0.0, # threshold for predictions, 0.9 means you want very confident predictions only
topk=5,
# window of predictions to check if using exclude or restrict, if set to 1, only the top prediction will be checked
exclude=lambda x: re.search('boat|ocean', x, flags=re.I),
# function to exclude classification of these predicted labels
restrict=lambda x: re.search('sand|beach|sunset', x, flags=re.I),
# function to restrict classification to only these predicted labels
dataloader_options={
'batch_size': 4, # *** adjust ***
'shuffle': False,
'num_workers': psutil.cpu_count(logical=False), # *** adjust ***
'pin_memory': True,
},
accumulate=False,
# accumulate results in path_out, if False, everything in path_out will be deleted before running again
device='cuda',
naming_style='name', # use human-readable label names, optionally use the label index or synset
debug=0,
)
```