Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/trikit/trikit

A Pythonic Approach to Actuarial Reserving
https://github.com/trikit/trikit

actuarial finance insurance python reserving

Last synced: 9 days ago
JSON representation

A Pythonic Approach to Actuarial Reserving

Awesome Lists containing this project

README

        

# trikit Quickstart Guide

**Author:** James D. Triveri
**Release:** 0.3.7

trikit is a collection of Loss Reserving utilities developed to
facilitate Actuarial analysis in Python, with particular emphasis on
automating the basic techniques generally used for estimating unpaid
claim liabilities. trikit\'s core data structure is the triangle, which
comes in both incremental and cumulative varieties. trikit's triangle
objects inherit directly from Pandas DataFrame, so all of the familiar
methods and attributes used when working in Pandas can be be applied
to trikit triangle objects.

Along with the core `IncrTriangle` and `CumTriangle` data structures,
trikit exposes a number of common methods for estimating unpaid claim
liabilities, as well as techniques to quantify variability around those
estimates. Currently available reserve estimators are `BaseChainLadder`,
`MackChainLadder` and `BootstrapChainLadder`. Refer to the examples
below for sample use cases.

Finally, in addition to the library's core Chain Ladder functionality,
trikit exposes a convenient interface that links to the Casualty
Actuarial Society's Schedule P Loss Rerserving Database. The database
contains information on Commercial Auto losses for all property-casualty
insurers that write business in the U.S. More information related to the
the Schedule P Loss Reserving Database can be found
[here](https://www.casact.org/research/index.cfm?fa=loss_reserves_data).

## Documentation:

trikit documentation is available [here](https://trikit.github.io/trikit-docs/).

## Installation

trikit can be installed by running:

```sh
$ python -m pip install trikit
```

## Quickstart

We begin by loading the RAA sample dataset, which represents Automatic
Factultative business in General Liability provided by the Reinsurance
Association of America. Sample datasets are loaded as DataFrame objects,
and always represent incremental losses. Sample datasets can be loaded
as follows:

```python
In [1]: import trikit
In [2]: raa = trikit.load("raa")
In [3]: raa.head()
Out[3]:
origin dev value
0 1981 1 5012
1 1981 2 3257
2 1981 3 2638
3 1981 4 898
4 1981 5 1734
```

A list of available datasets can be obtained by calling `get_datasets`:

```python
In [4]: trikit.get_datasets()
Out[4]: ['amw09', 'autoliab', 'glre', 'raa', 'singinjury', 'singproperty', 'ta83']
```

Any of the datasets listed above can be read in the same way using
`trikit.load`. Note that sample datasets can be returned as triangle objects directly. For
example, the RAA dataset can be returned as a cumulative triangle as follows:

```python
In [5]: tri = trikit.load("raa", tri_type="cum")
In [6]: tri
Out[6]:
1 2 3 4 5 6 7 8 9 10
1981 5,012 8,269 10,907 11,805 13,539 16,181 18,009 18,608 18,662 18,834
1982 106 4,285 5,396 10,666 13,782 15,599 15,496 16,169 16,704 nan
1983 3,410 8,992 13,873 16,141 18,735 22,214 22,863 23,466 nan nan
1984 5,655 11,555 15,766 21,266 23,425 26,083 27,067 nan nan nan
1985 1,092 9,565 15,836 22,169 25,955 26,180 nan nan nan nan
1986 1,513 6,445 11,702 12,935 15,852 nan nan nan nan nan
1987 557 4,020 10,946 12,314 nan nan nan nan nan nan
1988 1,351 6,947 13,112 nan nan nan nan nan nan nan
1989 3,133 5,395 nan nan nan nan nan nan nan nan
1990 2,063 nan nan nan nan nan nan nan nan nan
```

### Working with Triangles

Triangles are created by calling the `totri` function. Available
arguments are:

- `data`: The dataset to transform into a triangle instance.
- `tri_type`: {\"cum\", \"incr\"} Specifies the type of triangle to
create.
- `data_format`: {\"cum\", \"incr\"} Specifies how losses are
represented with the input dataset `data`.
- `data_shape`: {\"tabular\", \"triangle\"} Specifies whether input
dataset `data` represents tabular loss data with columns \"origin\",
\"dev\" and \"value\", or data already structured as a loss triangle
with columns corresponding to development periods.
- `origin`: The column name in `data` corresponding to accident year.
Ignored if `data_shape="triangle"`.
- `dev`: The column name in `data` corresponding to development
period. Ignored if `data_shape="triangle"`.
- `value`: The column name in `data` corresponding to the measure of
interest. Ignored if `data_shape="triangle"`.

Next we demonstrate how to create triangles using `totri` and various
combinations of the arguments listed above.

#### **Example 1:** Create a cumulative loss triangle from tabular incremental data

Referring again to the RAA dataset, let's create a cumulative loss
triangle. We mentioned above that trikit sample datasets are Pandas
DataFrames which reflect incremental losses, so `data_format="incr"` and
`data_shape="tabular"`, both of which are defaults. Also, the default
for `tri_type` is `"cum"`, so the only argument required to pass into
`totri` is the input dataset `data`:

```python
In [1]: import pandas as pd
In [2]: from trikit import load, totri
In [3]: raa = load("raa")
In [4]: tri = totri(raa)
In [5]: tri
Out[5]:
1 2 3 4 5 6 7 8 9 10
1981 5,012 8,269 10,907 11,805 13,539 16,181 18,009 18,608 18,662 18,834
1982 106 4,285 5,396 10,666 13,782 15,599 15,496 16,169 16,704 nan
1983 3,410 8,992 13,873 16,141 18,735 22,214 22,863 23,466 nan nan
1984 5,655 11,555 15,766 21,266 23,425 26,083 27,067 nan nan nan
1985 1,092 9,565 15,836 22,169 25,955 26,180 nan nan nan nan
1986 1,513 6,445 11,702 12,935 15,852 nan nan nan nan nan
1987 557 4,020 10,946 12,314 nan nan nan nan nan nan
1988 1,351 6,947 13,112 nan nan nan nan nan nan nan
1989 3,133 5,395 nan nan nan nan nan nan nan nan
1990 2,063 nan nan nan nan nan nan nan nan nan
```

`tri` is an instance of `trikit.triangle.CumTriangle`, which inherits from pandas.DataFrame:

```python
In [6]: type(tri)
Out[6]: trikit.triangle.CumTriangle
In [7]: isinstance(tri, pd.DataFrame)
Out[7]: True
```

This means that all of the functionality exposed by DataFrame objects
gets inherited by triangle objects. For example, to access the first
column of `tri`:

```python
In [8]: tri.loc[:,1]
Out[8]:
1981 5012.00000
1982 106.00000
1983 3410.00000
1984 5655.00000
1985 1092.00000
1986 1513.00000
1987 557.00000
1988 1351.00000
1989 3133.00000
1990 2063.00000
Name: 1, dtype: float64
```

Triangle objects offer a number of methods useful in Actuarial reserving
contexts. To extract the latest diagonal, call `tri.latest`:

```python
In [9]: tri.latest
Out[9]:
origin dev latest
0 1981 10 18834.00000
1 1982 9 16704.00000
2 1983 8 23466.00000
3 1984 7 27067.00000
4 1985 6 26180.00000
5 1986 5 15852.00000
6 1987 4 12314.00000
7 1988 3 13112.00000
8 1989 2 5395.00000
9 1990 1 2063.00000
```

Calling `tri.a2a` produces a DataFrame of age-to-age factors:

```python
In[10]: tri.a2a
Out[10]:
1 2 3 4 5 6 7 8 9
1981 1.64984 1.31902 1.08233 1.14689 1.19514 1.11297 1.03326 1.00290 1.00922
1982 40.42453 1.25928 1.97665 1.29214 1.13184 0.99340 1.04343 1.03309 nan
1983 2.63695 1.54282 1.16348 1.16071 1.18570 1.02922 1.02637 nan nan
1984 2.04332 1.36443 1.34885 1.10152 1.11347 1.03773 nan nan nan
1985 8.75916 1.65562 1.39991 1.17078 1.00867 nan nan nan nan
1986 4.25975 1.81567 1.10537 1.22551 nan nan nan nan nan
1987 7.21724 2.72289 1.12498 nan nan nan nan nan nan
1988 5.14212 1.88743 nan nan nan nan nan nan nan
1989 1.72199 nan nan nan nan nan nan nan nan
```

Calling `tri.a2a_avgs` produces a table of candidate loss development
factors, which contains arithmetic, geometric and weighted age-to-age
averages for a number of different periods:

```python
In[11]: tri.a2a_avgs()
Out[11]:
1 2 3 4 5 6 7 8 9
simple-1 1.72199 1.88743 1.12498 1.22551 1.00867 1.03773 1.02637 1.03309 1.00922
simple-2 3.43205 2.30516 1.11517 1.19815 1.06107 1.03347 1.03490 1.01799 1.00922
simple-3 4.69378 2.14200 1.21009 1.16594 1.10261 1.02011 1.03436 1.01799 1.00922
simple-4 4.58527 2.02040 1.24478 1.16463 1.10992 1.04333 1.03436 1.01799 1.00922
simple-5 5.42005 1.88921 1.22852 1.19013 1.12696 1.04333 1.03436 1.01799 1.00922
simple-6 4.85726 1.83148 1.35321 1.18293 1.12696 1.04333 1.03436 1.01799 1.00922
simple-7 4.54007 1.74973 1.31451 1.18293 1.12696 1.04333 1.03436 1.01799 1.00922
simple-8 9.02563 1.69589 1.31451 1.18293 1.12696 1.04333 1.03436 1.01799 1.00922
all-simple 8.20610 1.69589 1.31451 1.18293 1.12696 1.04333 1.03436 1.01799 1.00922
geometric-1 1.72199 1.88743 1.12498 1.22551 1.00867 1.03773 1.02637 1.03309 1.00922
geometric-2 2.97568 2.26699 1.11513 1.19783 1.05977 1.03346 1.03487 1.01788 1.00922
geometric-3 3.99805 2.10529 1.20296 1.16483 1.10019 1.01993 1.03433 1.01788 1.00922
geometric-4 4.06193 1.98255 1.23788 1.16380 1.10802 1.04244 1.03433 1.01788 1.00922
geometric-5 4.73672 1.83980 1.22263 1.18840 1.12492 1.04244 1.03433 1.01788 1.00922
geometric-6 4.11738 1.78660 1.32455 1.18138 1.12492 1.04244 1.03433 1.01788 1.00922
geometric-7 3.86345 1.69952 1.28688 1.18138 1.12492 1.04244 1.03433 1.01788 1.00922
geometric-8 5.18125 1.64652 1.28688 1.18138 1.12492 1.04244 1.03433 1.01788 1.00922
all-geometric 4.56261 1.64652 1.28688 1.18138 1.12492 1.04244 1.03433 1.01788 1.00922
weighted-1 1.72199 1.88743 1.12498 1.22551 1.00867 1.03773 1.02637 1.03309 1.00922
weighted-2 2.75245 2.19367 1.11484 1.19095 1.05838 1.03381 1.03326 1.01694 1.00922
weighted-3 3.24578 2.05376 1.23215 1.15721 1.09340 1.02395 1.03326 1.01694 1.00922
weighted-4 3.47986 1.91259 1.26606 1.15799 1.09987 1.04193 1.03326 1.01694 1.00922
weighted-5 4.23385 1.74821 1.24517 1.17519 1.11338 1.04193 1.03326 1.01694 1.00922
weighted-6 3.30253 1.70935 1.29886 1.17167 1.11338 1.04193 1.03326 1.01694 1.00922
weighted-7 3.16672 1.67212 1.27089 1.17167 1.11338 1.04193 1.03326 1.01694 1.00922
weighted-8 3.40156 1.62352 1.27089 1.17167 1.11338 1.04193 1.03326 1.01694 1.00922
all-weighted 2.99936 1.62352 1.27089 1.17167 1.11338 1.04193 1.03326 1.01694 1.00922
```

We can obtain a reference to an incremental representation of the
cumulative triangle by calling `tri.to_incr`:

```python
In[12]: tri.to_incr()
Out[12]:
1 2 3 4 5 6 7 8 9 10
1981 5,012 3,257 2,638 898 1,734 2,642 1,828 599 54 172
1982 106 4,179 1,111 5,270 3,116 1,817 -103 673 535 nan
1983 3,410 5,582 4,881 2,268 2,594 3,479 649 603 nan nan
1984 5,655 5,900 4,211 5,500 2,159 2,658 984 nan nan nan
1985 1,092 8,473 6,271 6,333 3,786 225 nan nan nan nan
1986 1,513 4,932 5,257 1,233 2,917 nan nan nan nan nan
1987 557 3,463 6,926 1,368 nan nan nan nan nan nan
1988 1,351 5,596 6,165 nan nan nan nan nan nan nan
1989 3,133 2,262 nan nan nan nan nan nan nan nan
1990 2,063 nan nan nan nan nan nan nan nan nan
```

#### **Example 2:** Create an incremental loss triangle from tabular incremental data

The call to `totri` is identical to Example #1, but we change `tri_type` from "cum" to "incr":

```python
In [1]: import pandas as pd
In [2]: from trikit import load, totri
In [3]: raa = load("raa")
In [4]: tri = totri(raa, tri_type="incr")
In [5]: type(tri)
Out[5]: trikit.triangle.IncrTriangle
In [6]: tri
Out[6]:
1 2 3 4 5 6 7 8 9 10
1981 5,012 3,257 2,638 898 1,734 2,642 1,828 599 54 172
1982 106 4,179 1,111 5,270 3,116 1,817 -103 673 535 nan
1983 3,410 5,582 4,881 2,268 2,594 3,479 649 603 nan nan
1984 5,655 5,900 4,211 5,500 2,159 2,658 984 nan nan nan
1985 1,092 8,473 6,271 6,333 3,786 225 nan nan nan nan
1986 1,513 4,932 5,257 1,233 2,917 nan nan nan nan nan
1987 557 3,463 6,926 1,368 nan nan nan nan nan nan
1988 1,351 5,596 6,165 nan nan nan nan nan nan nan
1989 3,133 2,262 nan nan nan nan nan nan nan nan
1990 2,063 nan nan nan nan nan nan nan nan nan
```

`tri` now represents RAA losses in incremental format.

It is possible to obtain a cumulative representation of an incremental
triangle object by calling `tri.to_cum`:

```python
In [7]: tri.to_cum()
Out[7]:
1 2 3 4 5 6 7 8 9 10
1981 5,012 8,269 10,907 11,805 13,539 16,181 18,009 18,608 18,662 18,834
1982 106 4,285 5,396 10,666 13,782 15,599 15,496 16,169 16,704 nan
1983 3,410 8,992 13,873 16,141 18,735 22,214 22,863 23,466 nan nan
1984 5,655 11,555 15,766 21,266 23,425 26,083 27,067 nan nan nan
1985 1,092 9,565 15,836 22,169 25,955 26,180 nan nan nan nan
1986 1,513 6,445 11,702 12,935 15,852 nan nan nan nan nan
1987 557 4,020 10,946 12,314 nan nan nan nan nan nan
1988 1,351 6,947 13,112 nan nan nan nan nan nan nan
1989 3,133 5,395 nan nan nan nan nan nan nan nan
1990 2,063 nan nan nan nan nan nan nan nan nan
```

#### **Example 3:** Create a cumulative loss triangle from data formatted as a triangle

There may be situations in which data is already formatted as a
triangle, and we're interested in creating a triangle instance from
this data. In the next example, we create a DataFrame with the same
shape as a triangle, which we then pass into `totri` with
`data_shape="triangle"` to obtain a cumulative triangle instance:

```python
In [1]: import pandas as pd
In [2]: from trikit import load, totri
In [3]: dftri = pd.DataFrame({
1:[1010, 1207, 1555, 1313, 1905],
2:[767, 1100, 1203, 900, np.NaN],
3:[444, 623, 841, np.NaN, np.NaN],
4:[239, 556, np.NaN, np.NaN, np.NaN],
5:[80, np.NaN, np.NaN, np.NaN, np.NaN],
}, index=list(range(1, 6))
)
In [4]: dftri
Out[4]:
1 2 3 4 5
1 1010. 767. 444. 239. 80.
2 1207. 1100. 623. 556. nan
3 1555. 1203. 841. nan nan
4 1313. 900. nan nan nan
5 1905. nan nan nan nan

In [5]: tri = totri(dftri, data_shape="triangle")
In [6]: type(tri)
Out[6]: trikit.triangle.CumTriangle
```

trikit cumulative triangle instances expose a plot method, which
generates a faceted plot by origin representing the progression of
cumulative losses to date by development period. The exhibit can be
obtained as follows:

```python
In [5]: tri.plot()
```

Reserve Estimators
------------------

trikit includes a number of reserve estimators. Let's refer to the CAS
Loss Reserving Dastabase (lrdb) included with trikit, focusing on
`grcode=1767` and `lob="comauto"` (`grcode` uniquely identifies each
company in the database. To obtain a full list of grcodes and associated
companies, use `trikit.get_lrdb_specs`; to obtain a list of
available lines of business (lobs), use `trikit.get_lrdb_lobs`):

```python
In [1]: from trikit import load_lrdb, totri
In [2]: df = load_lrdb(lob="comauto", grcode=1767)
In [3]: tri = totri(df)
In [4]: tri
1 2 3 4 5 6 7 8 9 10
1988 110,231 263,079 431,216 611,278 797,428 985,570 1,174,922 1,366,229 1,558,096 1,752,096
1989 121,678 279,896 456,640 644,767 837,733 1,033,837 1,233,015 1,432,670 1,633,619 nan
1990 123,376 298,615 500,570 714,683 934,671 1,157,979 1,383,820 1,610,193 nan nan
1991 117,457 280,058 463,396 662,003 865,401 1,071,271 1,278,228 nan nan nan
1992 124,611 291,399 481,170 682,203 889,029 1,101,390 nan nan nan nan
1993 137,902 323,854 533,211 753,639 980,180 nan nan nan nan nan
1994 150,582 345,110 561,315 792,392 nan nan nan nan nan nan
1995 150,511 345,241 560,278 nan nan nan nan nan nan nan
1996 142,301 326,584 nan nan nan nan nan nan nan nan
1997 143,970 nan nan nan nan nan nan nan nan nan
```

Similar to `load`, `load_lrdb` also accepts a `tri_type` argument, which returns the lrdb subset
as an incremental or cumulative triangle:

```python
In [5]: tri = load_lrdb(tri_type="cum", lob="comauto", grcode=1767)
```

To obtain base chain ladder reserve estimates, call the cumulative
triangle's `base_cl` method:

```python
In [5]: result = tri.base_cl()
In [6]: result
Out[6]:
maturity cldf emergence latest ultimate reserve
1988 10 1.00000 1.00000 1,752,096 1,752,096 0
1989 9 1.12451 0.88928 1,633,619 1,837,022 203,403
1990 8 1.28233 0.77983 1,610,193 2,064,802 454,609
1991 7 1.49111 0.67064 1,278,228 1,905,977 627,749
1992 6 1.77936 0.56200 1,101,390 1,959,771 858,381
1993 5 2.20146 0.45425 980,180 2,157,822 1,177,642
1994 4 2.87017 0.34841 792,392 2,274,299 1,481,907
1995 3 4.07052 0.24567 560,278 2,280,624 1,720,346
1996 2 6.68757 0.14953 326,584 2,184,053 1,857,469
1997 1 15.62506 0.06400 143,970 2,249,541 2,105,571
total nan nan 10,178,930 20,666,007 10,487,077
```

The result is of type `BaseChainLadderResult`. The columns of `result` can be
accessed in total or individually. The result above can be returned as a DataFrame by calling
`result.summary`:

```python
In [7]: result.summary
Out[7]:
maturity cldf emergence latest ultimate reserve
1988 10 1.000000 1.000000 1752096.0 1.752096e+06 0.000000e+00
1989 9 1.124511 0.889275 1633619.0 1.837022e+06 2.034034e+05
1990 8 1.282332 0.779829 1610193.0 2.064802e+06 4.546094e+05
1991 7 1.491108 0.670642 1278228.0 1.905977e+06 6.277486e+05
1992 6 1.779362 0.561999 1101390.0 1.959771e+06 8.583811e+05
1993 5 2.201455 0.454245 980180.0 2.157822e+06 1.177642e+06
1994 4 2.870169 0.348412 792392.0 2.274299e+06 1.481907e+06
1995 3 4.070523 0.245669 560278.0 2.280624e+06 1.720346e+06
1996 2 6.687568 0.149531 326584.0 2.184053e+06 1.857469e+06
1997 1 15.625064 0.064000 143970.0 2.249541e+06 2.105571e+06
total NaN NaN 10178930.0 2.066601e+07 1.048708e+07
```

To access the reserve estimates as a Series, call `result.reserve`:

```python
In [8]: result.reserve
Out[8]:
1988 0.0
1989 203403.0
1990 454609.0
1991 627749.0
1992 858381.0
1993 1177642.0
1994 1481907.0
1995 1720346.0
1996 1857469.0
1997 2105571.0
total 10487077.0
Name: reserve, dtype: float64
```

`base_cl` accepts two optional arguments:

- `tail`: The tail factor, which defaults to 1.0.

- `sel`: Loss development factors, which defaults to "all-weighted". `sel` can be either a string corresponding to a pre-computed
pattern available in `tri.a2a_avgs().index`, or a custom set of loss development factors as a numpy array or Pandas Series.

Example #2 demonstrated how to access a number of candidate loss
development patterns by calling `tri.a2a_avgs`. Available pre-computed
options for `sel` can be any value present in `tri.a2a_avgs`\'s index.
To obtain a list of available pre-computed loss development factors by
name, run:

```python
In [9]: tri.a2a_avgs().index.tolist()
Out[9]:
['simple-1', 'simple-2', 'simple-3', 'simple-4', 'simple-5', 'simple-6', 'simple-7',
'simple-8', 'all-simple', 'geometric-1', 'geometric-2', 'geometric-3', 'geometric-4',
'geometric-5', 'geometric-6', 'geometric-7', 'geometric-8', 'all-geometric',
'weighted-1', 'weighted-2', 'weighted-3', 'weighted-4', 'weighted-5', 'weighted-6',
'weighted-7', 'weighted-8', 'all-weighted']
```

If instead of `all-weighted`, a 5-year geometric loss development
pattern is preferred, along with a tail factor of 1.015, the call to
`base_cl` would be modified as follows:

```python
In[10]: tri.base_cl(sel="geometric-5", tail=1.015)
Out[10]:
maturity cldf emergence latest ultimate reserve
1988 10 1.01500 0.98522 1,752,096 1,778,377 26,281
1989 9 1.14138 0.87613 1,633,619 1,864,578 230,959
1990 8 1.30157 0.76830 1,610,193 2,095,778 485,585
1991 7 1.51344 0.66075 1,278,228 1,934,517 656,289
1992 6 1.80591 0.55374 1,101,390 1,989,009 887,619
1993 5 2.23416 0.44760 980,180 2,189,878 1,209,698
1994 4 2.91249 0.34335 792,392 2,307,832 1,515,440
1995 3 4.13521 0.24183 560,278 2,316,869 1,756,591
1996 2 6.78292 0.14743 326,584 2,215,194 1,888,610
1997 1 15.69149 0.06373 143,970 2,259,103 2,115,133
total nan nan 10,178,930 20,951,135 10,772,205
```

If `sel` is a Series or numpy ndarray, a check will first be made to
ensure the LDFs have the requiste number of elements. The provided LDFs
should not include a tail factor.

Next, reserves are estimated with the chain ladder method along with an
external set of LDFs using the same loss reserve database subset
(`grcode=1767` and `lob="commauto"`):

```python
In[11]: tri = load_lrdb(tri_type="cum", lob="commauto", grcode=1767)
In[12]: ldfs = np.asarray([2.75, 1.55, 1.50, 1.25, 1.15, 1.075, 1.03, 1.02, 1.01])
In[13]: cl = tri.base_cl(sel=ldfs)
In[14]: cl
Out[14]:
maturity cldf emergence latest ultimate reserve
1988 10 1.00000 1.00000 1,752,096 1,752,096 0
1989 9 1.01000 0.99010 1,633,619 1,649,955 16,336
1990 8 1.03020 0.97069 1,610,193 1,658,821 48,628
1991 7 1.06111 0.94241 1,278,228 1,356,335 78,107
1992 6 1.14069 0.87666 1,101,390 1,256,343 154,953
1993 5 1.31179 0.76232 980,180 1,285,793 305,613
1994 4 1.63974 0.60985 792,392 1,299,317 506,925
1995 3 2.45961 0.40657 560,278 1,378,066 817,788
1996 2 3.81240 0.26230 326,584 1,245,068 918,484
1997 1 10.48409 0.09538 143,970 1,509,394 1,365,424
total nan nan 10,178,930 14,391,188 4,212,258
```

If `ldfs` is not of the correct length (length n-1 for a triangle having n
development periods), `ValueError` is raised:

```python
In[15]: ldfs = np.asarray([2.75, 1.55, 1.50, 1.25, 1.15, 1.075, 1.03])
In[16]: result = tri.base_cl(sel=ldfs)
Traceback (most recent call last):
File "trikit\chainladder\base.py", line 117, in __call__
ValueError: sel has 7 values, LDF overrides require 9.
```

A faceted plot by origin combining actuals and forcasts can be obtained
by calling `result`'s plot method:

```python
In[17]: result = tri.base_cl(sel="geometric-5", tail=1.015)
In[18]: result.plot()
```

## Quantifying Reserve Variability

The Base Chain Ladder method provides an estimate by origin and in total
of future outstanding claim liabilities, but offers no indication of the
variability around those point estimates. We can obtain quantiles of the
predictive distribution of reserve estimates through a number of trikit
estimators.

### Mack Chain Ladder

The Mack Chain Ladder is a distribution free model which estimates the
first two moments of standard chain ladder forecasts. Within trikit, the
Mack Chain Ladder method is dispatched by calling a cumulative triangle's
`mack_cl` method. `mack_cl` accepts a number of optional arguments:

- `alpha`: Controls how loss development factors are computed. Can be
0, 1 or 2. When `alpha=0`, LDFs are computed as the straight average
of observed individual link ratios. When `alpha=1`, the historical
Chain Ladder age-to-age factors are computed. When `alpha=2`, a
regression of \$[C](){k+1}\$ on \$[C](){k}\$ with 0 intercept is
performed. Default is 1.
- `dist`: Either "norm\" or "lognorm\". Represents the selected
distribution to approximate the true distribution of reserves by
origin period and in aggregate. Setting `dist="norm"` specifies a
normal distribution. `dist="lognorm"` assumes a log-normal
distribution. Default is "lognorm".
- `q`: Quantile or sequence of quantiles to compute, which must be
between 0 and 1 inclusive. Default is [.75, .95].
- `two_sided`: Whether the two_sided interval should be included in
summary output. For example, if `two_sided==True` and `q=.95`, then
the 2.5th and 97.5th quantiles of the estimated reserve distribution
will be returned ((1 - .95) / 2, (1 + .95) / 2). When False, only
the specified quantile(s) will be computed. Default value is False.

Using the `ta83` sample dataset, calling `mack_cl` with default
arguments yields:

```python
In [1]: from trikit import load, totri
In [2]: tri = load("ta83", tri_type="cum")
In [3]: mcl = tri.mack_cl()
In [4]: mcl
Out[4]:
maturity cldf emergence latest ultimate reserve std_error cv 75% 95%
1 10 1.00000 1.00000 3,901,463 3,901,463 0 0 nan nan nan
2 9 1.01772 0.98258 5,339,085 5,433,719 94,634 75,535 0.79818 118,760 234,717
3 8 1.09564 0.91271 4,909,315 5,378,826 469,511 121,700 0.25921 539,788 691,334
4 7 1.15466 0.86605 4,588,268 5,297,906 709,638 133,551 0.18820 790,911 947,870
5 6 1.25428 0.79727 3,873,311 4,858,200 984,889 261,412 0.26542 1,135,100 1,462,149
6 5 1.38450 0.72228 3,691,712 5,111,171 1,419,459 411,028 0.28957 1,651,045 2,174,408
7 4 1.62520 0.61531 3,483,130 5,660,771 2,177,641 558,356 0.25640 2,500,779 3,194,587
8 3 2.36858 0.42219 2,864,498 6,784,799 3,920,301 875,430 0.22331 4,439,877 5,499,652
9 2 4.13870 0.24162 1,363,294 5,642,266 4,278,972 971,385 0.22701 4,853,918 6,033,399
10 1 14.44662 0.06922 344,014 4,969,838 4,625,824 1,363,376 0.29473 5,390,689 7,133,025
total nan nan 34,358,090 53,038,959 18,680,869 2,447,318 0.13101 20,226,192 22,955,604
```

Quantiles of the estimated reserve distribution can be obtained by calling `get_quantiles`.
`q` can be either a single float or an array of floats representing the percentiles of
interest (which must fall within [0, 1]):

```python
In [5]: mcl.get_quantiles(q=[.05, .10, .25, .50, .75, .90, .95])
Out[5]:
5th 10th 25th 50th 75th 90th 95th
1 nan nan nan nan nan nan nan
2 23306.0 30078.0 46063.0 73962.0 118760.0 181873.0 234717.0
3 298788.0 327792.0 382673.0 454491.0 539788.0 630163.0 691334.0
4 513108.0 549091.0 614936.0 697395.0 790911.0 885754.0 947870.0
5 619750.0 681372.0 798314.0 951928.0 1135100.0 1329915.0 1462149.0
6 854941.0 947780.0 1125948.0 1363448.0 1651045.0 1961416.0 2174408.0
7 1392853.0 1526576.0 1779281.0 2109405.0 2500779.0 2914751.0 3194587.0
8 2661766.0 2883868.0 3297115.0 3826066.0 4439877.0 5076093.0 5499652.0
9 2885978.0 3130850.0 3587259.0 4172800.0 4853918.0 5561511.0 6033399.0
10 2760122.0 3065251.0 3652226.0 4437118.0 5390689.0 6422971.0 7133025.0
total 14945656.0 15671023.0 16962489.0 18522596.0 20226192.0 21893054.0 22955604.0
```

The `MackChainLadderResult`'s `plot` method returns a faceted plot of estimated reserve
distributions by origin and in total. The mean is highlighted, along with any quantiles
passed to the `plot` method via `q`. We can compare the estimated distributions when
`dist="lognorm"` vs. `dist="norm"`, highlighting the mean and 95th percentile. First we
take a look at `dist="lognorm"`:

```python
In [7]: mcl.plot()
```

### Testing for Development Period Correlation

In [1] Appendix G., Mack proposes an approximate test to assess whether
one of the basic Chain Ladder assumptions holds, namely that subsequent
development periods are uncorrelated. The test can be performed via
`MackChainLadderResult`'s `devp_corr_test` method. We next apply the
test to the RAA dataset:

```python
In [1]: from trikit import load, totri
In [2]: df = load("raa")
In [3]: tri = totri(data=df)
In [4]: mcl = tri.mack_cl()
In [5]: mcl.devp_corr_test()
Out[5]: ((-0.12746658149149367, 0.12746658149149367), 0.0695578231292517)
```

`devp_corr_test` returns a 2-tuple: The first element represents the
bounds of the test interval ((-0.127, 0.127)). The second element is the
test statistic for the triangle under consideration. In this example,
the test statistic falls within the bounds of the test interval,
therefore we do not reject the null-hypothesis of having uncorrelated
development factors. If the test statistic falls outside the interval,
the correlations should be analyzed in more detail. Refer to \[1\] for
more information.

### Testing for Calendar Year Effects

In [1] Appendix H., Mack proposes a test to assess the independence of
the origin periods. This test can be performed via
`MackChainLadderResult`'s `cy_effects_test` method. Again using the RAA
dataset:

```python
In [1]: from trikit import load, totri
In [2]: tri = load("raa", tri_type="cum")
In [3]: mcl = tri.mack_cl()
In [4]: mcl.cy_effects_test()
Out[4]: ((8.965613354894957, 16.78438664510504), 14.0)
```

Similar to `devp_corr_test`, `cy_effects_test` returns a 2-tuple, with
the first element representing the bounds of the test interval ((8.97,
16.78)) and the second element the test statistic. In this example, the
test statistic falls within the bounds of thew test interval, therefore
we do not reject the null-hypothesis of not having significant calendar
year influences. Refer to [1] for more information.

### Mack Chain Ladder Diagnostics

`MackChainLadderResult` exposes a `diagnostics` method, which generates
a faceted plot that includes the estimated aggregate reserve
distribution, development by origin and standardized residuals by
development period and by origin:

```python
In [1]: from trikit import load, totri
In [2]: tri = load("raa", tri_type="cum")
In [3]: mcl = tri.mack_cl()
In [4]: mcl.diagnostics()
```

### Bootstrap Chain Ladder

The purpose of the Bootstrap Chain Ladder is to estimate the predicition
error of the total reserve estimate and to approximate the predictive
distribution. Within trikit, the Bootstrap Chain Ladder is encapsulated
within a cumulative triangle's `boot_cl` method. `boot_cl` accepts a
number of optional arguments:

- `sims`: The number of bootstrap iterations to perform. Default value
is 1000.
- `q`: Quantile or sequence of quantiles to compute, which must be
between 0 and 1 inclusive. Default value is \[.75, .95\].
- `procdist`: The distribution used to incorporate process variance.
Currently, this can only be set to \"gamma\". This may change in a
future release.
- `two_sided`: Whether the two_sided prediction interval should be
included in summary output. For example, if `two_sided=True` and
`q=.95`, then the 2.5th and 97.5th quantiles of the predictive
reserve distribution will be returned \[(1 - .95) / 2, (1 + .95) /
2\]. When False, only the specified quantile(s) will be included in
summary output. Default value is False.
- `parametric`: If True, fit standardized residuals to a normal
distribution via maximum likelihood, and sample from the
parameterized distribution. Otherwise, sample with replacement from
the collection of standardized fitted triangle residuals. Default
value is False.
- `interpolation`: One of {'linear', 'lower', 'higher', 'midpoint', 'nearest'}.
Default value is 'linear'. Refer to
[numpy.quantile](https://numpy.org/devdocs/reference/generated/numpy.quantile.html)
for more information.
- `random_state`: If int, random_state is the seed used by the random
number generator; If `RandomState` instance, random_state is the
random number generator; If None, the random number generator is the
`RandomState` instance used by np.random. Default value is None.

We next demonstrate how to apply the Bootstrap Chain Ladder to the RAA
dataset. The example sets `sims=1000`, `two_sided=False` and
`random_state=516` for reproducibility:

```python
In [1]: from trikit import load, totri
In [2]: tri = load("raa", tri_type="cum")
In [3]: bcl = tri.boot_cl(sims=1000, two_sided=False, random_state=516)
In [4]: bcl
Out[4]:
maturity cldf emergence latest ultimate reserve std_error cv 75% 95%
1981 10 1.00000 1.00000 18,834 18,834 0 0 nan 0 0
1982 9 1.00922 0.99087 16,704 16,863 159 529 3.331 245 1,108
1983 8 1.02631 0.97437 23,466 24,395 929 1,026 1.104 1,101 2,609
1984 7 1.06045 0.94300 27,067 28,648 1,581 1,592 1.007 2,472 4,704
1985 6 1.10492 0.90505 26,180 29,087 2,907 1,883 0.648 3,914 6,341
1986 5 1.23020 0.81288 15,852 19,762 3,910 1,931 0.494 4,892 7,114
1987 4 1.44139 0.69377 12,314 17,738 5,424 2,538 0.468 6,947 10,061
1988 3 1.83185 0.54590 13,112 24,365 11,253 3,980 0.354 13,565 18,735
1989 2 2.97405 0.33624 5,395 16,325 10,930 4,940 0.452 13,870 19,879
1990 1 8.92023 0.11210 2,063 18,973 16,910 11,028 0.652 22,863 37,008
total nan nan 160,987 214,989 54,002 14,832 0.275 62,597 80,200
```

`reserve` represents the mean of the predicitive distribution of reserve estimates
by origin and in total, and `75%` and `95%` represent quantiles of the distribution.

Additional quantiles of the bootstrapped reserve distribution can be obtained by calling
`get_quantiles`. `q` can be either a single float or an array of floats representing the
percentiles of interest (which must fall within [0, 1]). We set `lb=0` to set negative
quantiles to 0:

```python
In [5]: bcl.get_quantiles(q=[.05, .10, .25, .75, .90, .95], lb=0)
Out[5]:
5th 10th 25th 75th 90th 95th
1981 0.0 0.0 0.0 0.0 0.0 0.0
1982 0.0 0.0 0.0 245.0 694.0 1108.0
1983 0.0 0.0 30.0 1101.0 2001.0 2609.0
1984 0.0 142.0 618.0 2472.0 3758.0 4704.0
1985 349.0 693.0 1449.0 3914.0 5234.0 6341.0
1986 1117.0 1454.0 2319.0 4892.0 6348.0 7114.0
1987 1838.0 2396.0 3555.0 6947.0 8832.0 10061.0
1988 5469.0 6452.0 8256.0 13565.0 16339.0 18735.0
1989 3671.0 4892.0 7257.0 13870.0 17667.0 19879.0
1990 1793.0 4278.0 8790.0 22863.0 30904.0 37008.0
total 31588.0 36193.0 43009.0 62597.0 73218.0 80200.0
```

`BoostrapChainLadderResult` exposes two exhibits: The first is similar to `BaseChainLadderResult`'s
`plot`, but includes the upper and lower bounds of the specified quantile of the
predictive distribution. To obtain the faceted plot displaying the 5th and 95th
percentiles, run:

```python
In [5]: bcl = tri.boot_cl(sims=2500, two_sided=True, random_state=516)
In [6]: bcl.plot(q=.90)
```

In addition, we can obtain a faceted plot of the distribution of bootstrap samples by origin
and in aggregate by calling `BoostrapChainLadderResult`'s `hist` method:

```python
In [7]: bcl.hist()
```

There are a number of parameters which can be used to control the style of the
generated exhibits. Refer to the documentation for more information.

## References

1. Mack, Thomas (1993) *Measuring the Variability of Chain Ladder
Reserve Estimates*, 1993 CAS Prize Paper Competition on
Variability of Loss Reserves.
2. Mack, Thomas, (1993), *Distribution-Free Calculation of the Standard
Error of Chain Ladder Reserve Estimates*, ASTIN Bulletin 23, no.
2:213-225.
3. Mack, Thomas, (1999), *The Standard Error of Chain Ladder Reserve
Estimates: Recursive Calculation and Inclusion of a Tail Factor*,
ASTIN Bulletin 29, no. 2:361-366.
4. England, P., and R. Verrall, (2002), *Stochastic Claims Reserving in
General Insurance*, British Actuarial Journal 8(3): 443-518.
5. Murphy, Daniel, (2007), *Chain Ladder Reserve Risk Estimators*, CAS
E-Forum, Summer 2007.
6. Carrato, A., McGuire, G. and Scarth, R. 2016. *A Practitioner's
Introduction to Stochastic Reserving*, The Institute and Faculty of
Actuaries. 2016.

## Contact

Please contact [email protected] with suggestions or feature
requests.

## Relevant Links

- trikit Source: https://github.com/trikit/trikit
- CAS Loss Reserving Database: https://www.casact.org/research/index.cfm?fa=loss_reserves_data
- Python: https://www.python.org/
- Numpy: http://www.numpy.org/
- Scipy: https://docs.scipy.org/doc/scipy/reference/
- Pandas: https://pandas.pydata.org/
- Matplotlib: https://matplotlib.org/
- Seaborn: https://seaborn.pydata.org/