Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/trinker/gofastr
Make a DocumentTermMatrix faster
https://github.com/trinker/gofastr
data-reshaping document-term-matrix manipulation r text-mining
Last synced: 3 months ago
JSON representation
Make a DocumentTermMatrix faster
- Host: GitHub
- URL: https://github.com/trinker/gofastr
- Owner: trinker
- Created: 2015-09-09T01:41:49.000Z (over 9 years ago)
- Default Branch: master
- Last Pushed: 2023-10-24T10:13:13.000Z (about 1 year ago)
- Last Synced: 2024-08-06T03:04:13.554Z (6 months ago)
- Topics: data-reshaping, document-term-matrix, manipulation, r, text-mining
- Language: R
- Homepage:
- Size: 1.61 MB
- Stars: 19
- Watchers: 6
- Forks: 3
- Open Issues: 4
-
Metadata Files:
- Readme: README.Rmd
Awesome Lists containing this project
README
---
title: "gofastr"
date: "`r format(Sys.time(), '%d %B, %Y')`"
output:
md_document:
toc: true
---```{r, echo=FALSE}
desc <- suppressWarnings(readLines("DESCRIPTION"))
regex <- "(^Version:\\s+)(\\d+\\.\\d+\\.\\d+)"
loc <- grep(regex, desc)
ver <- gsub(regex, "\\2", desc[loc])verbadge <- sprintf('', ver, ver)
verbadge <- ''````
[![Project Status: Active - The project has reached a stable, usable state and is being actively developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active)
[![Build Status](https://travis-ci.org/trinker/gofastr.svg?branch=master)](https://travis-ci.org/trinker/gofastr)
[![Coverage Status](https://coveralls.io/repos/trinker/gofastr/badge.svg?branch=master)](https://coveralls.io/r/trinker/gofastr?branch=master)
[![](http://cranlogs.r-pkg.org/badges/gofastr)](https://cran.r-project.org/package=gofastr)
`r verbadge````{r, echo=FALSE, message=FALSE}
",sep="")
library(knitr)
knit_hooks$set(htmlcap = function(before, options, envir) {
if(!before) {
paste('
}
})
knitr::opts_knit$set(self.contained = TRUE, cache = FALSE)
knitr::opts_chunk$set(fig.path = "tools/figure/")
```![](tools/gofastr_logo/r_gofastr.png)
**gofastr** is designed to do one thing really well...make a `DocumentTermMatrix`. It harnesses the
power [**quanteda**](https://github.com/kbenoit/quanteda) (which in
turn wraps **data.table**, **stringi**, & **Matrix**) to quickly generate **tm** `DocumentTermMatrix` and `TermDocumentMatrix` data structures. There are two ways in which time is meaingingful to an analyst: (a) coding time, or the time spent writing code and (b) computational run time, or the time the computer takes to run the code. Ideally, we want to minimize both of these sources of time expenditures. The **gofaster** package is my attempt to reduce the time an analysts takes to turn raw text into an analysis ready data format and relies on **quanteda** to minimize the run time.In my work I often get data in the form of large .csv files or SQL databases. Additionally, most of the higher level analysis of text I undertake utilizes a `TermDocumentMatrix` or `DocumentTermMatrix` as the input data. Generally, the **tm** package's `Corpus` structure is an unnecessary step in building a usable data structure that requires additional coding and run time. **gofastr** skips this step and uses [**quanteda**](https://github.com/kbenoit/quanteda) to quickly make the `DocumentTermMatrix` or `TermDocumentMatrix` structures that are fast to code up and fast for the computer to build.
# Function Usage
Functions typically fall into the task category of matrix (1) *creation* & (2) *manipulating*. The main functions, task category, & descriptions are summarized in the table below:
| Function | Category | Description |
|------------------------|--------------|------------------------------------------------------------------------|
| `q_tdm` & `q_tdm_stem` | creation | `TermDocumentMatrix` from string vector |
| `q_dtm` & `q_dtm_stem` | creation | `DocumentTermMatrix` from string vector |
| `remove_stopwords` | manipulation | Remove stopwords and minimal character words from `TermDocumentMatrix`/`DocumentTermMatrix` |
| `filter_words` | manipulation | Filter words from `TermDocumentMatrix`/`DocumentTermMatrix` |
| `filter_tf_idf` | manipulation | Filter low tf-idf words from `TermDocumentMatrix`/`DocumentTermMatrix` |
| `filter_documents` | manipulation | Filter documents from a `TermDocumentMatrix`/`DocumentTermMatrix` |
| `select_documents` | manipulation | Select documents from `TermDocumentMatrix`/`DocumentTermMatrix` |
| `sub_in_na` | manipulation | Sub missing (`NA`) for regex matches (default: non-content elements) |# Installation
To download the development version of **gofastr**:
Download the [zip ball](https://github.com/trinker/gofastr/zipball/master) or [tar ball](https://github.com/trinker/gofastr/tarball/master), decompress and run `R CMD INSTALL` on it, or use the **pacman** package to install the development version:
```r
if (!require("pacman")) install.packages("pacman")
pacman::p_load_gh("trinker/gofastr")
```# Contact
You are welcome to:
* submit suggestions and bug-reports at:
* send a pull request on:
* compose a friendly e-mail to:# Demonstration
## Load Packages
```{r}
if (!require("pacman")) install.packages("pacman")
pacman::p_load(gofastr, tm, magrittr)
```## DocumentTerm/TermDocument Matrices
```{r}
(w <-with(presidential_debates_2012, q_dtm(dialogue, paste(time, tot, sep = "_"))))
(x <- with(presidential_debates_2012, q_tdm(dialogue, paste(time, tot, sep = "_"))))
```## Stopwords
Stopwords are those words that we want to remove from the analysis because they give little information gain. These words occur so frequently in all documents or give very content information (i.e., function words) and thus are excluded. The `remove_stopwords` function allows the user to remove stopwords using three approaches/arguments:
1. `stopwords` - A vector of common + resercher defined words (see [**lexicon**](https://CRAN.R-project.org/package=lexicon) package)
2. `min.char`/`max.char` - Automatic removal of words less/greater than n characters in length
3. `denumber` - Removal of words that are numbersBy default `stopwords = tm::stopwords("english")`, `min.char = 3`, and `denumber =TRUE`.
```{r}
with(presidential_debates_2012, q_dtm(dialogue, paste(time, tot, sep = "_"))) %>%
remove_stopwords()with(presidential_debates_2012, q_tdm(dialogue, paste(time, tot, sep = "_"))) %>%
remove_stopwords()
```## Weighting
As the output from **gofastr** matrix create functions is a true **tm** object, weighting is done in the standard way using **tm**'s built in weighting functions. This is done post-hoc of creation.
```{r}
with(presidential_debates_2012, q_dtm(dialogue, paste(time, tot, sep = "_"))) %>%
tm::weightTfIdf()
```## Stemming
To stem words utilize `q_dtm_stem` and `q_tdm_stem` which utilize **SnowballC**'s stemmer under the hood.
```{r}
with(presidential_debates_2012, q_dtm_stem(dialogue, paste(time, tot, sep = "_"))) %>%
remove_stopwords()
```## Manipulating via Words
### Filter Out Low Occurring Words
To filter out words with counts below a threshold we use `filter_words`.
```{r}
with(presidential_debates_2012, q_dtm(dialogue, paste(time, person, sep = "_"))) %>%
filter_words(5)
```### Filter Out High/Low Frequency (low information) Words
To filter out words with high/low frequency in all documents (thus low information) use `filter_tf_idf`. The default `min` uses the *tf-idf*'s median per Grüen & Hornik's (2011) demonstration.
```{r}
with(presidential_debates_2012, q_dtm(dialogue, paste(time, person, sep = "_"))) %>%
filter_tf_idf()
```\*Grüen, B. & Hornik, K. (2011). topicmodels: An R Package for Fitting Topic Models. *Journal of Statistical Software*, 40(13), 1-30. http://www.jstatsoft.org/article/view/v040i13/v40i13.pdf
## Manipulating via Documents
### Filter Out Low Occurring Documents
To filter out documents with word counts below a threshold use `filter_documents`. Remember the warning from above:
> `Warning message:`
`In tm::weightTfIdf(.) : empty document(s): time 1_88.1 time 2_52.1`Here we use `filter_documents`' default (a document must have a row/column sum greater than 1) to eliminate the warning:
```{r}
with(presidential_debates_2012, q_dtm(dialogue, paste(time, tot, sep = "_"))) %>%
filter_documents() %>%
tm::weightTfIdf()
```### Selecting Documents
To select only documents matching a regex use the `select_documents` function. This is useful for selecting only particular documents within the corpus.
```{r}
with(presidential_debates_2012, q_dtm(dialogue, paste(time, person, sep = "_"))) %>%
select_documents('romney', ignore.case=TRUE)with(presidential_debates_2012, q_dtm(dialogue, paste(time, person, sep = "_"))) %>%
select_documents('^(?!.*romney).*$', ignore.case = TRUE)
```## Putting It Together
Of course we can chain matrix creation functions with several of the manipulation function to quickly prepare data for analysis. Here I demonstrate preparing data for a topic model using **gofastr** and then the analysis. Finally, I plot the results and use the **LDAvis** package to interact with the results. Note that this is meant to demonstrate the types of analysis that **gofastr** may be of use to; the methods and parameters/hyper-parameters are selected with little regard to analysis.
```{r, fig.width=10, fig.height=10}
pacman::p_load(tm, topicmodels, dplyr, tidyr, gofastr, devtools, LDAvis, ggplot2)## Source topicmodels2LDAvis function
devtools::source_url("https://gist.githubusercontent.com/trinker/477d7ae65ff6ca73cace/raw/79dbc9d64b17c3c8befde2436fdeb8ec2124b07b/topicmodels2LDAvis")data(presidential_debates_2012)
## Generate Stopwords
stops <- c(
tm::stopwords("english"),
"governor", "president", "mister", "obama","romney"
) %>%
prep_stopwords()## Create the DocumentTermMatrix
doc_term_mat <- presidential_debates_2012 %>%
with(q_dtm_stem(dialogue, paste(person, time, sep = "_"))) %>%
remove_stopwords(stops) %>%
filter_tf_idf() %>%
filter_words(4) %>%
filter_documents()## Run the Model
lda_model <- topicmodels::LDA(doc_term_mat, 10, control = list(seed=100))## Plot the Topics Per Person_Time
topics <- posterior(lda_model, doc_term_mat)$topics
topic_dat <- tibble::rownames_to_column(as.data.frame(topics), "Person_Time")
colnames(topic_dat)[-1] <- apply(terms(lda_model, 10), 2, paste, collapse = ", ")gather(topic_dat, Topic, Proportion, -c(Person_Time)) %>%
separate(Person_Time, c("Person", "Time"), sep = "_") %>%
mutate(Person = factor(Person,
levels = c("OBAMA", "ROMNEY", "LEHRER", "SCHIEFFER", "CROWLEY", "QUESTION" ))
) %>%
ggplot(aes(weight=Proportion, x=Topic, fill=Topic)) +
geom_bar() +
coord_flip() +
facet_grid(Person~Time) +
guides(fill=FALSE) +
xlab("Proportion")
```### LDAvis of Model
The output from **LDAvis** is not easily embedded within an R markdown document, thus the reader will need to run the code below to interact with the results.
```{r, eval=FALSE}
lda_model %>%
topicmodels2LDAvis() %>%
LDAvis::serVis()
```## Comparing Timings
On a smaller `r nrow(presidential_debates_2012)` rows these are the time comparisons between **gofastr** and **tm** using `Sys.time`. Notice the **gofaster** runs faster (the creation of a corpus is expensive) and requires significantly less code.
```{r}
pacman::p_load(gofastr, tm)
pd <- as.data.frame(presidential_debates_2012, stringsAsFactors = FALSE)## tm Timing
tic <- Sys.time()
rownames(pd) <- paste("docs", 1:nrow(pd))
pd[['groups']] <- with(pd, paste(time, tot, sep = "_"))
pd <- Corpus(DataframeSource(setNames(pd[, 5:6, drop=FALSE], c('text', 'doc_id'))))(out <- DocumentTermMatrix(pd,
control = list(
tokenize=scan_tokenizer,
stopwords=TRUE,
removeNumbers = TRUE,
removePunctuation = TRUE,
wordLengths=c(3, Inf)
)
) )
difftime(Sys.time(), tic)## gofastr Timing
tic <- Sys.time()
x <-with(presidential_debates_2012, q_dtm(dialogue, paste(time, tot, sep = "_")))
remove_stopwords(x)
difftime(Sys.time(), tic)
```### With Stemming
```{r}
pacman::p_load(gofastr, tm)
pd <- as.data.frame(presidential_debates_2012, stringsAsFactors = FALSE)## tm Timing
tic <- Sys.time()
rownames(pd) <- paste("docs", 1:nrow(pd))
pd[['groups']] <- with(pd, paste(time, tot, sep = "_"))
pd <- Corpus(DataframeSource(setNames(pd[, 5:6, drop=FALSE], c('text', 'doc_id'))))
pd <- tm_map(pd, stemDocument)(out <- DocumentTermMatrix(pd,
control = list(
tokenize=scan_tokenizer,
stopwords=TRUE,
removeNumbers = TRUE,
removePunctuation = TRUE,
wordLengths=c(3, Inf)
)
) )
difftime(Sys.time(), tic)## gofastr Timing
tic <- Sys.time()
x <-with(presidential_debates_2012, q_dtm_stem(dialogue, paste(time, tot, sep = "_")))
remove_stopwords(x, stem=TRUE)
difftime(Sys.time(), tic)
```