https://github.com/tristan-mcinnis/qualitative-insight-engine
AI-powered qualitative research analysis pipeline with GPT-5 Nano and Pinecone vector storage for automated topic analysis and report generation
https://github.com/tristan-mcinnis/qualitative-insight-engine
ai docx gpt-5 llm pinecone python qualitative-analysis qualitative-research
Last synced: about 1 month ago
JSON representation
AI-powered qualitative research analysis pipeline with GPT-5 Nano and Pinecone vector storage for automated topic analysis and report generation
- Host: GitHub
- URL: https://github.com/tristan-mcinnis/qualitative-insight-engine
- Owner: tristan-mcinnis
- License: mit
- Created: 2025-08-20T13:47:09.000Z (about 2 months ago)
- Default Branch: master
- Last Pushed: 2025-08-21T04:04:40.000Z (about 1 month ago)
- Last Synced: 2025-08-21T04:40:59.160Z (about 1 month ago)
- Topics: ai, docx, gpt-5, llm, pinecone, python, qualitative-analysis, qualitative-research
- Language: TypeScript
- Homepage: https://qualitative-insight-engine.vercel.app
- Size: 369 KB
- Stars: 0
- Watchers: 0
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Qualitative Insight Engine
An AI-powered qualitative research analysis platform with real-time processing, persistent storage, and enterprise-ready architecture.
## ๐ Features
- **Supabase Backend**: Full PostgreSQL database with real-time capabilities
- **GPT-5 Nano Integration**: Advanced AI analysis using OpenAI's latest model
- **Real-time Updates**: Live progress tracking via Supabase channels
- **Persistent Storage**: All data permanently stored with secure file management
- **Multi-Project Support**: Manage multiple analysis projects simultaneously
- **Automated Topic Analysis**: Emergent theme identification and categorization
- **Strategic Insights**: AI-generated recommendations and key takeaways
- **Multi-format Export**: Excel workbooks and Word documents with detailed analysis## ๐๏ธ Architecture
### Technology Stack
- **Backend**: Node.js/Express with TypeScript
- **Database**: PostgreSQL via Supabase
- **Storage**: Supabase Storage (S3-compatible)
- **Real-time**: Supabase Channels (WebSocket)
- **Frontend**: React with TypeScript
- **AI Processing**: OpenAI GPT-5 Nano
- **Edge Functions**: Supabase Edge Functions (Deno)### Key Components
- **Project Management**: Create and manage multiple research projects
- **File Upload**: Secure storage for discussion guides and transcripts
- **Analysis Pipeline**: Async AI processing with progress tracking
- **Real-time Subscriptions**: Live updates during analysis
- **Results Export**: Comprehensive reports in multiple formats## ๐ Requirements
- Node.js 18+
- npm or yarn
- Supabase account
- OpenAI API key## ๐ ๏ธ Installation
### 1. Clone the repository
```bash
git clone https://github.com/yourusername/qualitative-insight-engine.git
cd qualitative-insight-engine
```### 2. Backend Setup
```bash
cd src/backend
npm install
cp .env.example .env
# Edit .env with your Supabase and OpenAI credentials
```### 3. Frontend Setup
```bash
cd src/frontend
npm install
cp .env.example .env
# Edit .env with your Supabase credentials
```### 4. Environment Variables
#### Backend (.env)
```env
SUPABASE_URL=your_supabase_url
SUPABASE_ANON_KEY=your_anon_key
OPENAI_API_KEY=your_openai_key
PORT=5000
NODE_ENV=development
```#### Frontend (.env)
```env
REACT_APP_SUPABASE_URL=your_supabase_url
REACT_APP_SUPABASE_ANON_KEY=your_anon_key
REACT_APP_API_URL=http://localhost:5000/api
```## ๐ Usage
### Start the Backend Server
```bash
cd src/backend
npm run dev # Development mode
npm run build && npm start # Production mode
```### Start the Frontend Application
```bash
cd src/frontend
npm start # Development mode
npm run build # Production build
```### API Endpoints
#### Project Management
- `POST /api/projects` - Create new project
- `GET /api/projects` - List all projects
- `GET /api/projects/:id` - Get project details
- `PUT /api/projects/:id` - Update project
- `DELETE /api/projects/:id` - Delete project#### File Upload
- `POST /api/projects/:id/upload/guide` - Upload discussion guide
- `POST /api/projects/:id/upload/transcripts` - Upload transcript files
- `GET /api/projects/:id/files` - List project files#### Analysis
- `POST /api/analysis/start` - Start analysis for project
- `GET /api/analysis/progress/:sessionId` - Get analysis progress
- `GET /api/analysis/results/:sessionId` - Get analysis results## ๐ Project Structure
```
qualitative-insight-engine/
โโโ src/
โ โโโ backend/ # TypeScript backend services
โ โ โโโ src/
โ โ โ โโโ config/ # Configuration
โ โ โ โโโ routes/ # API routes
โ โ โ โโโ services/ # Business logic
โ โ โ โโโ types/ # TypeScript types
โ โ โโโ package.json
โ โโโ frontend/ # React frontend
โ โโโ src/
โ โ โโโ components/
โ โ โโโ services/
โ โ โโโ types/
โ โโโ package.json
โโโ supabase/
โ โโโ functions/ # Edge Functions
โ โโโ process-analysis/
โ โโโ extract-verbatims/
โ โโโ analyze-topics/
โโโ tests/
โ โโโ backend/ # Backend test suite
โโโ README.md
```## ๐ Workflow
1. **Create Project**: Initialize a new analysis project
2. **Upload Files**: Add discussion guide and transcript files
3. **Configure Analysis**: Set analysis parameters and options
4. **Start Processing**: Initiate AI-powered analysis
5. **Track Progress**: Real-time updates during processing
6. **View Results**: Interactive results dashboard
7. **Export Reports**: Download comprehensive reports## ๐งช Testing
### Backend Tests
```bash
cd tests/backend
npm install
npm test # Run all tests
npm run test:coverage # Coverage report
```### Test Categories
- **Unit Tests**: Individual service testing
- **Integration Tests**: API endpoint testing
- **Service Tests**: Business logic validation## ๐ Security
- Row Level Security (RLS) on all database tables
- Secure file storage with signed URLs
- Environment-based configuration
- API validation and error handling
- Future-ready authentication system## ๐ข Deployment
### Supabase Setup
1. Create a new Supabase project
2. Run database migrations from `supabase/migrations/`
3. Deploy Edge Functions
4. Configure storage buckets### Backend Deployment
```bash
cd src/backend
npm run build
# Deploy to your preferred Node.js hosting
```### Frontend Deployment
```bash
cd src/frontend
npm run build
# Deploy build/ directory to CDN or static hosting
```## ๐ค Contributing
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Write/update tests
5. Submit a pull request## ๐ License
MIT License - see LICENSE file for details
## ๐ Support
For issues or questions:
- Open an issue on GitHub
- Check the documentation
- Contact the development team## ๐ฏ Roadmap
- [ ] User authentication and multi-tenancy
- [ ] Collaborative analysis features
- [ ] Advanced visualization options
- [ ] Custom AI model training
- [ ] API rate limiting and quotas
- [ ] Webhook integrations
- [ ] Mobile application---
Built with โค๏ธ using Supabase, React, and TypeScript