Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tristandeleu/synergies-disentanglement-sparsity
Official code for the paper "Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning" (ICML 2023)
https://github.com/tristandeleu/synergies-disentanglement-sparsity
Last synced: 16 days ago
JSON representation
Official code for the paper "Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning" (ICML 2023)
- Host: GitHub
- URL: https://github.com/tristandeleu/synergies-disentanglement-sparsity
- Owner: tristandeleu
- License: mit
- Created: 2023-05-30T19:47:26.000Z (over 1 year ago)
- Default Branch: master
- Last Pushed: 2023-05-30T19:52:59.000Z (over 1 year ago)
- Last Synced: 2024-10-07T11:21:34.839Z (about 1 month ago)
- Language: Python
- Size: 410 KB
- Stars: 2
- Watchers: 2
- Forks: 1
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning (ICML 2023)
This repository contains the official implementation of ([Lachapelle et al., 2023](https://arxiv.org/abs/2211.14666)).
## Installation
To avoid any conflict with your existing Python setup, it is recommended to work in a virtual environment:
```bash
python -m venv venv
source venv/bin/activate
```Follow these [instructions](https://github.com/google/jax#installation) to install the version of JAX corresponding to your versions of CUDA and CuDNN.
```bash
pip install -r requirements.txt
pip install -e .
```## Experiment (3D Shapes)
To reproduce our disentanglement experiment on 3D Shapes (Figure 4), you can run the following script:```bash
python sparsemeta/main_regression.py \
--meta_lr 0.001 \
--num_batches 20000 \
--rep_norm batch_norm \
--z_dim 6 \
--shots 25 \
--test_shots 25 \
--use_plam \
--l1reg 0.3 \
--outer_l1reg 0.0 \
--l2reg 1e-07 \
--outer_l2reg 0.0 \
--use_ridge_solver \
--task_mode binomial_gauss \
--weight_decay 0.0 \
--maxiter_inner 1000 \
--inner_solver pcd \
--dis_eval_every 1000 \
--no_inner_outer_split \
--scale_noise 0.1 \
--z_noise_scale 1.0 \
--z_dist harder_gauss_0.9 \
--dataset Regression3DShapes
```## Citation
If you want to cite our work, please use the following Bibtex entry:```
@article{lachapelle2023synergiesmultitask,
title={{Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning}},
author={Lachapelle, Sebastien and Deleu, Tristan and Mahajan, Divyat and Mitliagkas, Ioannis and Bengio, Yoshua, and Lacoste-Julien, Simon and Bertrand, Quentin},
journal={International Conference on Machine Learning (ICML)},
year={2023}
}
```