Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/trubrics/streamlit-feedback

Collect user feedback from within your Streamlit app
https://github.com/trubrics/streamlit-feedback

Last synced: 21 days ago
JSON representation

Collect user feedback from within your Streamlit app

Awesome Lists containing this project

README

        

# streamlit-feedback

A Streamlit component to add **user feedback** to your apps.

```python
from streamlit_feedback import streamlit_feedback
feedback = streamlit_feedback(feedback_type="thumbs")
feedback
```

## Examples

[Here](streamlit_feedback/examples.py) are many examples of how the feedback component can be added to your app. Each function represents a different app.

> [!IMPORTANT]
> The `streamlit_feedback` component triggers a page reload when submitted, this is how streamlit components work. The `on_submit` function is only then run when your app reaches the `streamlit-feedback()` call on the rerun.

## Install

```sh
pip install streamlit-feedback
```

## Usage
It can be used with these parameters:

```python
def streamlit_feedback(
feedback_type,
optional_text_label=None,
max_text_length=None,
disable_with_score=None,
on_submit=None,
args=(),
kwargs={},
align="flex-end",
key=None,
):
"""Create a new instance of "streamlit_feedback".

Parameters
----------
feedback_type: str
The type of feedback; "thumbs" or "faces".
optional_text_label: str or None
An optional label to add as a placeholder to the textbox.
If None, the "thumbs" or "faces" will not be accompanied by textual feedback.
max_text_length: int or None
Defaults to None. If set, enables the multi-line functionality and determines the maximum characters the textbox allows. Else, displays the default one-line textbox.
disable_with_score: str
An optional score to disable the component. Must be a "thumbs" emoji or a "faces" emoji. Can be used to pass state from one component to another.
on_submit: callable
An optional callback invoked when feedback is submitted. This function must accept at least one argument, the feedback response dict,
allowing you to save the feedback to a database for example. Additional arguments can be specified using `args` and `kwargs`.
args: tuple
Additional positional arguments to pass to `on_submit`.
kwargs: dict
Additional keyword arguments to pass to `on_submit`.
align: str
Where to align the feedback component; "flex-end", "center" or "flex-start".
key: str or None
An optional key that uniquely identifies this component. If this is
None, and the component's arguments are changed, the component will
be re-mounted in the Streamlit frontend and lose its current state.

Returns
-------
dict
The user response, with the feedback_type, score and text fields. If on_submit returns a value, this value will be returned by the component.

"""
```

Here are some more examples:

```python
from streamlit_feedback import streamlit_feedback
feedback = streamlit_feedback(
feedback_type="thumbs",
optional_text_label="[Optional] Please provide an explanation",
)
feedback
```

---

```python
from streamlit_feedback import streamlit_feedback
feedback = streamlit_feedback(feedback_type="faces")
feedback
```

---

```python
from streamlit_feedback import streamlit_feedback
feedback = streamlit_feedback(
feedback_type="faces",
optional_text_label="[Optional] Please provide an explanation",
)
feedback
```

---

```python
from streamlit_feedback import streamlit_feedback
feedback = streamlit_feedback(feedback_type="thumbs", align="flex-start")
feedback
```

## Contributing

We welcome all contributions. To test & run the streamlit-feedback component locally, you will need to run both the frontend javascript component and the streamlit server.

1. Run the component frontend

```
cd streamlit_feedback/frontend && npm run start
```

2. Run the server

```python
streamlit run streamlit_feedback/__init__.py
```

See more details in [CONTRIBUTING.md](CONTRIBUTING.md).