Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/truongtannghia/yolov5-deepsort-pytorch

Yolov5 + Deep Sort with PyTorch
https://github.com/truongtannghia/yolov5-deepsort-pytorch

deepsort opencv python pytorch yolov5

Last synced: about 1 month ago
JSON representation

Yolov5 + Deep Sort with PyTorch

Awesome Lists containing this project

README

        

# Yolov5 + Deep Sort with PyTorch
## Hi I'm Truong Tan Nghia


[![Discord](https://img.shields.io/badge/Discord-%237289DA.svg?logo=discord&logoColor=white)](htttps://discord.gg/tannghia) [![Facebook](https://img.shields.io/badge/Facebook-%231877F2.svg?logo=Facebook&logoColor=white)](https://facebook.com/tannghiaaaa) [![Instagram](https://img.shields.io/badge/Instagram-%23E4405F.svg?logo=Instagram&logoColor=white)](https://instagram.com/olld.man.teddy) [![TikTok](https://img.shields.io/badge/TikTok-%23000000.svg?logo=TikTok&logoColor=white)](https://tiktok.com/@Teddy)

[![](https://visitcount.itsvg.in/api?id=TruongTanNghia&icon=0&color=0)](https://visitcount.itsvg.in)

![INTRO](https://github.com/TruongTanNghia/TruongTanNghia/assets/92427686/5fec5021-f2b7-47ec-a6ce-bc657022038a)










Open In Colab

## Introduction

This repository contains a two-stage-tracker. The detections generated by [YOLOv5](https://github.com/ultralytics/yolov5), a family of object detection architectures and models pretrained on the COCO dataset, are passed to a [Deep Sort algorithm](https://github.com/ZQPei/deep_sort_pytorch) which tracks the objects. It can track any object that your Yolov5 model was trained to detect.

## Tutorials

`git clone https://github.com/TruongTanNghia/Yolov5-DeepSort-Pytorch`
## Before you run the tracker

Make sure that you fulfill all the requirements: Python 3.9.10 or later with all [requirements.txt]([https://github.com/TruongTanNghia/Yolov5-DeepSort-Pytorch](https://github.com/TruongTanNghia/Yolov5-DeepSort-Pytorch/requirements.txt) dependencies installed, including torch>=1.7. To install, run:

`pip install -r requirements.txt`