An open API service indexing awesome lists of open source software.

https://github.com/trustagi-lab/udagcn

Python implementation of "Unsupervised Domain Adaptive Graph Convolutional Networks", WWW-20.
https://github.com/trustagi-lab/udagcn

domain-adaptation graph-neural-networks

Last synced: 6 months ago
JSON representation

Python implementation of "Unsupervised Domain Adaptive Graph Convolutional Networks", WWW-20.

Awesome Lists containing this project

README

          

## Unsupervised Domain Adaptive Graph Convolutional Networks

This repository contains the author's implementation in PyTorch for the paper "Unsupervised Domain Adaptive Graph Convolutional Networks", WWW-20.

## Dependencies

- Python (>=3.6)
- Torch (>=1.2.0)
- numpy (>=1.16.4)
- torch_scatter (>= 1.3.0)
- torch_geometric (>= 1.3.0)

## Datasets
The data folder includes different domain data. The preprocessed data can be found in [Google Drive](https://drive.google.com/file/d/1DzQ3QN9yjQxU4vtYkXyCiJKFw7oCCPSM/view?usp=sharing).

The orginal datasets can be founded from [here](https://www.aminer.cn/citation).

## Implementation

Here we provide the implementation of UDA-GCN, along with two domain datasets. The repository is organised as follows:

- `data/` contains the necessary dataset files for DBLP domain and ACM domian(can be found in [Google Drive](https://drive.google.com/file/d/1DzQ3QN9yjQxU4vtYkXyCiJKFw7oCCPSM/view?usp=sharing));
- `dual_gnn/` contains the implementation of the Global GCN and Local GCN;

Finally, `UDAGCN_demo.py` puts all of the above together and can be used to execute a full training run on the datasets.

## Process
- Place the datasets in `data/`
- Change the `dataset` in `UDAGCN_demo.py` .
- Training/Testing:
```bash
python UDAGCN_demo.py
```
# Citation
```
@inproceedings{wu2020UDAGCN
author={Man Wu and Shirui Pan and Chuan Zhou and Xiaojun Chang and Xingquan Zhu},
title={Unsupervised Domain Adaptive Graph Convolutional Networks},
journal={{WWW} '20: The Web Conference},
year={2020}
}
```