https://github.com/trycua/cua
Open-source infrastructure for Computer-Use Agents. Sandboxes, SDKs, and benchmarks to train and evaluate AI agents that can control full desktops (macOS, Linux, Windows).
https://github.com/trycua/cua
agent ai-agent apple computer-use computer-use-agent containerization cua desktop-automation hacktoberfest lume macos manus operator swift virtualization virtualization-framework windows windows-sandbox
Last synced: 2 days ago
JSON representation
Open-source infrastructure for Computer-Use Agents. Sandboxes, SDKs, and benchmarks to train and evaluate AI agents that can control full desktops (macOS, Linux, Windows).
- Host: GitHub
- URL: https://github.com/trycua/cua
- Owner: trycua
- License: mit
- Created: 2025-01-31T15:02:49.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2026-01-16T22:35:02.000Z (27 days ago)
- Last Synced: 2026-01-16T22:48:04.850Z (27 days ago)
- Topics: agent, ai-agent, apple, computer-use, computer-use-agent, containerization, cua, desktop-automation, hacktoberfest, lume, macos, manus, operator, swift, virtualization, virtualization-framework, windows, windows-sandbox
- Language: Python
- Homepage: https://cua.ai
- Size: 111 MB
- Stars: 11,755
- Watchers: 49
- Forks: 697
- Open Issues: 82
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- Funding: .github/FUNDING.yml
- License: LICENSE.md
Awesome Lists containing this project
- awesome-mcp - trycua/cua
- StarryDivineSky - trycua/cua - Use AI Agents)解决方案,旨在通过容器化技术为 AI 代理提供高效、可扩展的运行环境。其核心功能是将大语言模型(如 Qwen)与计算机任务执行能力结合,使 AI 代理能够理解用户指令、调用系统工具并完成自动化操作。项目通过 Docker 容器封装了所有依赖项,用户无需手动配置复杂环境即可快速部署和使用。 项目的主要特色包括:**1. 集成 Qwen 等大语言模型**,支持自然语言交互,用户可通过对话形式下达任务指令;**2. 内置工具链**,可调用 Shell 命令、文件操作、网络请求等系统工具,实现任务自动化;**3. 容器化架构**,基于 Docker 技术确保环境隔离性与可移植性,避免依赖冲突;**4. 可视化交互界面**(如 Web 界面),方便用户实时监控任务执行状态与结果。工作原理上,AI 代理通过接收用户输入的自然语言指令,经大语言模型解析后生成可执行的命令序列,容器内部的工具链会按需调用系统资源完成任务,并将结果反馈给用户。 该项目适用于需要自动化处理计算机任务的场景,例如数据处理、系统运维、脚本生成等。用户可通过简单的 Docker 命令启动容器,容器内预装了必要的工具和模型,无需额外配置即可运行。项目还提供了详细的使用说明和示例,帮助用户快速上手。通过容器化设计,c/ua 简化了 AI 代理的部署流程,降低了技术门槛,同时保障了运行环境的稳定性与安全性。 (A01_文本生成_文本对话 / 大语言对话模型及数据)
- AiTreasureBox - trycua/cua - 11-03_11112_0](https://img.shields.io/github/stars/trycua/cua.svg)|Open-source infrastructure for Computer-Use Agents. Sandboxes, SDKs, and benchmarks to train and evaluate AI agents that can control full desktops (macOS, Linux, Windows).| (Repos)
- awesome-private-ai - CUA - enables AI agents to control full operating systems in virtual containers and deploy them locally or to the cloud. (Agents & Orchestration)
- awesome-ai-agents - trycua/cua - c/ua is a high-performance framework that enables AI agents to control full macOS and Linux operating systems within secure, lightweight virtual containers on Apple Silicon Macs, supporting complex autonomous workflows and LLM integration. (Agent Integration & Deployment Tools / MCP Server Framework)
- awesome-local-llm - cua - the Docker Container for Computer-Use AI Agents (Tools / Computer Use)
- definitive-opensource - c/ua - source infrastructure for Computer-Use Agents. Sandboxes, SDKs, and benchmarks to train and evaluate AI agents that can control full desktops (macOS, Linux, Windows). | `Cross` | **12.4k** | (Table of Contents / Agent)
README
**Cua** is an open-source platform for building, benchmarking, and deploying agents that can use any computer, with isolated, self-hostable sandboxes (Docker, QEMU, Apple Vz).
## Choose Your Path
If you want to...
Check out
Build AI agents that interact with any desktop, or run isolated code execution environments for AI coding assistants
Cua
Benchmark computer-use models on standardized tasks, or train agents with reinforcement learning
Cua-Bench
Run macOS and Linux VMs at near-native speed on Apple Silicon for CI/CD, testing, or agent workloads
Lume
---
## Cua - Agentic UI Automation & Code Execution
Build agents that see screens, click buttons, and complete tasks autonomously. Run isolated code execution environments for AI coding assistants like Claude Code, Codex CLI, or OpenCode.

```python
# Requires Python 3.12 or 3.13
from computer import Computer
from agent import ComputerAgent
computer = Computer(os_type="linux", provider_type="cloud")
agent = ComputerAgent(model="anthropic/claude-sonnet-4-5-20250929", computer=computer)
async for result in agent.run([{"role": "user", "content": "Open Firefox and search for Cua"}]):
print(result)
```
**[Get Started](https://cua.ai/docs/cua/guide/get-started/set-up-sandbox)** | **[Examples](https://cua.ai/docs/cua/examples)** | **[API Reference](https://cua.ai/docs/cua/reference/agent-sdk)**
---
## Cua-Bench - Benchmarks & RL Environments
Evaluate computer-use agents on OSWorld, ScreenSpot, Windows Arena, and custom tasks. Export trajectories for training.

```bash
# Install and create base image
cd cua-bench
uv tool install -e . && cb image create linux-docker
# Run benchmark with agent
cb run dataset datasets/cua-bench-basic --agent cua-agent --max-parallel 4
```
**[Get Started](https://cua.ai/docs/cuabench/guide/getting-started/first-steps)** | **[Registry](https://cuabench.ai/registry)** | **[CLI Reference](https://cua.ai/docs/cuabench/reference/cli-reference)**
---
## Lume - macOS Virtualization
Create and manage macOS/Linux VMs with near-native performance on Apple Silicon using Apple's Virtualization.Framework.

```bash
# Install Lume
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/trycua/cua/main/libs/lume/scripts/install.sh)"
# Pull & start a macOS VM
lume run macos-sequoia-vanilla:latest
```
**[Get Started](https://cua.ai/docs/lume)** | **[FAQ](https://cua.ai/docs/lume/guide/getting-started/faq)** | **[CLI Reference](https://cua.ai/docs/lume/reference/cli-reference)**
---
## Packages
| Package | Description |
| --------------------------------------------------------------------- | ---------------------------------------------------------- |
| [cua-agent](https://cua.ai/docs/cua/reference/agent-sdk) | AI agent framework for computer-use tasks |
| [cua-computer](https://cua.ai/docs/cua/reference/computer-sdk) | SDK for controlling desktop environments |
| [cua-computer-server](https://cua.ai/docs/cua/reference/computer-sdk) | Driver for UI interactions and code execution in sandboxes |
| [cua-bench](https://cua.ai/docs/cuabench) | Benchmarks and RL environments for computer-use |
| [lume](https://cua.ai/docs/lume) | macOS/Linux VM management on Apple Silicon |
| [lumier](https://cua.ai/docs/lume/guide/advanced/lumier) | Docker-compatible interface for Lume VMs |
## Resources
- [Documentation](https://cua.ai/docs) — Guides, examples, and API reference
- [Blog](https://www.cua.ai/blog) — Tutorials, updates, and research
- [Discord](https://discord.com/invite/mVnXXpdE85) — Community support and discussions
- [GitHub Issues](https://github.com/trycua/cua/issues) — Bug reports and feature requests
## Contributing
We welcome contributions! See our [Contributing Guidelines](CONTRIBUTING.md) for details.
## License
MIT License — see [LICENSE](LICENSE.md) for details.
Third-party components have their own licenses:
- [Kasm](libs/kasm/LICENSE) (MIT)
- [OmniParser](https://github.com/microsoft/OmniParser/blob/master/LICENSE) (CC-BY-4.0)
- Optional `cua-agent[omni]` includes ultralytics (AGPL-3.0)
## Trademarks
Apple, macOS, Ubuntu, Canonical, and Microsoft are trademarks of their respective owners. This project is not affiliated with or endorsed by these companies.
---
[](https://starchart.cc/trycua/cua)
Thank you to all our [GitHub Sponsors](https://github.com/sponsors/trycua)!
