Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tsenghungchen/dialog-generation-paper
A list of recent papers regarding dialogue generation
https://github.com/tsenghungchen/dialog-generation-paper
dialogue dialogue-generation dialogue-systems reinforcement-learning
Last synced: about 1 month ago
JSON representation
A list of recent papers regarding dialogue generation
- Host: GitHub
- URL: https://github.com/tsenghungchen/dialog-generation-paper
- Owner: tsenghungchen
- Created: 2016-07-12T08:07:41.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2019-04-28T20:19:38.000Z (over 5 years ago)
- Last Synced: 2024-08-03T02:03:39.993Z (4 months ago)
- Topics: dialogue, dialogue-generation, dialogue-systems, reinforcement-learning
- Size: 10.7 KB
- Stars: 271
- Watchers: 29
- Forks: 59
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Awesome-Paper-List - Dialogue Generation - tsenghungchen-be8abf) ![](https://img.shields.io/github/stars/tsenghungchen/dialog-generation-paper) (Natural Language Processing)
README
# Dialogue Generation Papers
A list of recent papers regarding dialog generation.
The papers are organized based on manually-defined bookmarks.
Any suggestions and pull requests are welcome.# Bookmarks
* [All Papers](#all-papers)
* [Dataset](#dataset)
* [Reinforcement Learning](#reinforcement-learning)
* [Memory networks](#memory-networks)
* [Recurrent Neural Networks](#recurrent-neural-networks)
* [Evaluation metrics](#evaluation-metrics)
* [Domain Adaptation](#domain-adaptation)
* [Variational Autoencoders](#variational-autoencoders)## All Papers
* [OpenSubtitles2016: Extracting Large Parallel Corpora from Movie and TV Subtitles](http://stp.lingfil.uu.se/~joerg/paper/opensubs2016.pdf), Pierre Lison et al., 2016 (3.36 million subtitles)
* [Building End-To-End Dialogue Systems
Using Generative Hierarchical Neural Network Models](https://arxiv.org/pdf/1507.04808.pdf), Iulian V. Serban et al., *AAAI*, 2015. (500 movies)
* [Deep Reinforcement Learning for Dialogue Generation](https://arxiv.org/pdf/1606.01541.pdf), Jiwei Li et al., *arXiv*, 2016.
* [Dialog-based Language Learning](https://arxiv.org/pdf/1604.06045v4.pdf), Jason Weston, Facebook AI Research, *arXiv*, 2016.
* [A Hierarchical Latent Variable Encoder-Decoder
Model for Generating Dialogues](https://arxiv.org/pdf/1605.06069v3.pdf), Iulian V. Serban et al., *arXiv*, 2016.
* [Multiresolution Recurrent Neural Networks: An Application to Dialogue Response Generation](https://arxiv.org/pdf/1606.00776v2.pdf), Iulian Vlad Serban et al., *arXiv*, 2016.
* [LSTM based Conversation Models](http://arxiv.org/pdf/1603.09457v1.pdf), Yi Luan et al., *arXiv*, 2016.
* [End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning](https://arxiv.org/pdf/1606.01269v1.pdf), Jason D. Williams and Geoffrey Zweig., Microsoft Research, *arXiv*, 2016.
* [Conversational Contextual Cues: The Case of Personalization and History for Response Ranking](https://arxiv.org/pdf/1606.00372v1.pdf), Rami Al-Rfou et al., Google Inc, *arXiv*, 2016.
* [Learning End-to-End Goal-Oriented Dialog](https://arxiv.org/pdf/1605.07683.pdf), Antoine Bordes and Jason Weston, Facebook AI Research, *arXiv*, 2016.
* [Evaluating Prerequisite Qualities For Learning End-to-End Dialog Systems](http://arxiv.org/pdf/1511.06931v6.pdf), Jesse Dodge et al., Facebook AI Research, ICLR 2016.
* [The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems](http://arxiv.org/pdf/1506.08909v3.pdf), Ryan Lowe et al., *SIGDial*, 2015. [[dataset](https://github.com/rkadlec/ubuntu-ranking-dataset-creator)]
* [How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation](https://arxiv.org/pdf/1603.08023v1.pdf), Chia-Wei Liu et al., *arXiv*, 2016.
* [A Survey of Available Corpora For Building Data-Driven Dialogue Systems](http://arxiv.org/pdf/1512.05742v2.pdf), Iulian Vlad Serban et al., *arXiv*, 2015.
* [Neural Responding Machine for Short-Text Conversation](https://arxiv.org/pdf/1503.02364v2.pdf), Lifeng Shang et al., *arXiv*, 2015.
* [A Neural Conversational Model](https://arxiv.org/pdf/1506.05869.pdf), Oriol Vinyals et al., *arXiv*, 2015.
* [A Neural Network Approach to Context-Sensitive Generation of Conversational Responses](http://arxiv.org/pdf/1506.06714v1.pdf), Alessandro Sordoni et al., *NAACL*, 2015.
* [A Diversity-Promoting Objective Function for Neural Conversation Models](http://arxiv.org/pdf/1510.03055v3.pdf), Jiwei Li et al., *NAACL*, 2016. (Maximum Mutual Information)
* [A Persona-Based Neural Conversation Model](http://arxiv.org/pdf/1603.06155v2.pdf), Jiwei Li et al., *ACL*, 2016.
* [Neural Net Models for Open-Domain Discourse Coherence](https://arxiv.org/pdf/1606.01545.pdf), Jiwei Li et al., *arXiv*, 2016.
* [A Network-based End-to-End Trainable Task-oriented Dialogue System](http://arxiv.org/pdf/1604.04562v2.pdf), Tsung-Hsien Wen et al., *arXiv*, 2016.
* [SimpleDS: A Simple Deep Reinforcement Learning Dialogue System](http://arxiv.org/pdf/1601.04574v1.pdf), Heriberto Cuayahuitl, *arXiv*, 2016.
* [End-To-End Generative Dialogue](https://github.com/michaelfarrell76/End-To-End-Generative-Dialogue/blob/master/paper/main.pdf), Colton Gyulay et al. [[code](https://github.com/michaelfarrell76/End-To-End-Generative-Dialogue)]
* [A Conditional Variational Framework for Dialog Generation](https://arxiv.org/pdf/1705.00316.pdf), Xiaoyu Shen, *arXiv*, 2017.
* [Towards Interpretable Chit-chat: Open Domain Dialogue Generation with Dialogue Acts](https://openreview.net/pdf?id=Bym0cU1CZ), 2017.
* [Frames: A Corpus for Adding Memory
to Goal-Oriented Dialogue Systems
](http://www.aclweb.org/anthology/W17-5526), Layla El Asri et al., Microsoft Maluuba. SIGDial 2017. [[dataset](http://datasets.maluuba.com/Frames)]
* [Relevance of Unsupervised Metrics in Task-Oriented Dialogue for
Evaluating Natural Language Generation](https://arxiv.org/pdf/1706.09799.pdf), Shikhar Sharma et al., Microsoft Maluuba. *arXiv* 2017. [[code](https://github.com/Maluuba/nlg-eval)]## Dataset
* [A Survey of Available Corpora For Building Data-Driven Dialogue Systems](http://arxiv.org/pdf/1512.05742v2.pdf), Iulian Vlad Serban et al., *arXiv*, 2015.
* [OpenSubtitles2016: Extracting Large Parallel Corpora from Movie and TV Subtitles](http://stp.lingfil.uu.se/~joerg/paper/opensubs2016.pdf), Pierre Lison et al. (3.36 million subtitles)
* [Building End-To-End Dialogue Systems
Using Generative Hierarchical Neural Network Models](https://arxiv.org/pdf/1507.04808.pdf), Iulian V. Serban et al., *AAAI*, 2015. (500 movies)
* [Conversational Contextual Cues: The Case of Personalization and History for Response Ranking](https://arxiv.org/pdf/1606.00372v1.pdf), Rami Al-Rfou et al., *arXiv*, 2016. (Reddit comments)
* [The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems](http://arxiv.org/pdf/1506.08909v3.pdf), Ryan Lowe et al., SIGDial 2015. [[dataset](https://github.com/rkadlec/ubuntu-ranking-dataset-creator)]
* [Frames: A Corpus for Adding Memory
to Goal-Oriented Dialogue Systems
](http://www.aclweb.org/anthology/W17-5526), Layla El Asri et al., Microsoft Maluuba. SIGDial 2017. [[dataset](http://datasets.maluuba.com/Frames)]## Reinforcement Learning
* [Deep Reinforcement Learning for Dialogue Generation](https://arxiv.org/pdf/1606.01541.pdf), Jiwei Li et al., *arXiv*, 2016.
* [End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning](https://arxiv.org/pdf/1606.01269v1.pdf), Jason D. Williams and Geoffrey Zweig., *arXiv*, 2016.
* [A Network-based End-to-End Trainable Task-oriented Dialogue System](http://arxiv.org/pdf/1604.04562v2.pdf), Tsung-Hsien Wen et al., *arXiv*, 2016.
* [SimpleDS: A Simple Deep Reinforcement Learning Dialogue System](http://arxiv.org/pdf/1601.04574v1.pdf), Heriberto Cuayahuitl, *arXiv*, 2016.
* [Towards Interpretable Chit-chat: Open Domain Dialogue Generation with Dialogue Acts](https://openreview.net/pdf?id=Bym0cU1CZ), 2017.
* [End-to-End Task-Completion Neural Dialogue Systems](https://arxiv.org/pdf/1703.01008.pdf), Xiujun Li et al., *arXiv*, 2018.## Memory Networks
* [Evaluating Prerequisite Qualities For Learning End-to-End Dialog Systems](http://arxiv.org/pdf/1511.06931v6.pdf), Jesse Dodge et al., Facebook AI Research, ICLR 2016.
* [Dialog-based Language Learning](https://arxiv.org/pdf/1604.06045v4.pdf), Jason Weston, *arXiv*, 2016.
* [Learning End-to-End Goal-Oriented Dialog](https://arxiv.org/pdf/1605.07683.pdf), Antoine Bordes and Jason Weston, *arXiv*, 2016.## Recurrent Neural Networks
* [Neural Responding Machine for Short-Text Conversation](https://arxiv.org/pdf/1503.02364v2.pdf), Lifeng Shang et al., *arXiv*, 2015.
* [A Neural Conversational Model](https://arxiv.org/pdf/1506.05869.pdf), Oriol Vinyals et al., *arXiv*, 2015.
* [A Neural Network Approach to Context-Sensitive Generation of Conversational Responses](http://arxiv.org/pdf/1506.06714v1.pdf), Alessandro Sordoni et al., *NAACL*, 2015.
* [A Hierarchical Latent Variable Encoder-Decoder
Model for Generating Dialogues](https://arxiv.org/pdf/1605.06069v3.pdf), Iulian V. Serban et al., *arXiv*, 2016.
* [Multiresolution Recurrent Neural Networks: An Application to Dialogue Response Generation](https://arxiv.org/pdf/1606.00776v2.pdf), Iulian Vlad Serban et al., *arXiv*, 2016.
* [LSTM based Conversation Models](http://arxiv.org/pdf/1603.09457v1.pdf), Yi Luan et al., *arXiv*, 2016.
* [End-to-end LSTM-based dialog control optimized with supervised and reinforcement learning](https://arxiv.org/pdf/1606.01269v1.pdf), Jason D. Williams and Geoffrey Zweig., *arXiv*, 2016.## Evaluation metrics
* [How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation](https://arxiv.org/pdf/1603.08023v1.pdf), Chia-Wei Liu et al., *arXiv*, 2016.
* [Relevance of Unsupervised Metrics in Task-Oriented Dialogue for
Evaluating Natural Language Generation](https://arxiv.org/pdf/1706.09799.pdf), Shikhar Sharma et al., Microsoft Maluuba. *arXiv* 2017. [[code](https://github.com/Maluuba/nlg-eval)]## Domain Adaptation
* [Multi-domain Neural Network Language Generation for Spoken Dialogue Systems](http://mi.eng.cam.ac.uk/~sjy/papers/wgmr16.pdf), Tsung-Hsien Wen et al.
* [Domain Adaptation with Unlabeled Data for Dialog Act Tagging](http://ttic.uchicago.edu/~klivescu/papers/margolis_etal_danlp2010.pdf), Anna Margolis et al.
* [Learning Domain-Independent Dialogue Policies via Ontology Parameterisation](http://mi.eng.cam.ac.uk/~sjy/papers/wsws15.pdf), Zhuoran Wang et al.## Variational Autoencoders
* [A Conditional Variational Framework for Dialog Generation](https://arxiv.org/pdf/1705.00316.pdf), Xiaoyu Shen, *arXiv*, 2017.