Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tsinghua-fib-lab/DiskNet
Official implementation for "Predicting Long-term Dynamics of Complex Networks via Identifying Skeleton in Hyperbolic Space" (KDD2024)
https://github.com/tsinghua-fib-lab/DiskNet
Last synced: 2 months ago
JSON representation
Official implementation for "Predicting Long-term Dynamics of Complex Networks via Identifying Skeleton in Hyperbolic Space" (KDD2024)
- Host: GitHub
- URL: https://github.com/tsinghua-fib-lab/DiskNet
- Owner: tsinghua-fib-lab
- License: mit
- Created: 2024-05-31T02:24:46.000Z (8 months ago)
- Default Branch: main
- Last Pushed: 2024-09-05T02:33:20.000Z (5 months ago)
- Last Synced: 2024-09-06T08:54:50.451Z (5 months ago)
- Language: Python
- Size: 353 KB
- Stars: 12
- Watchers: 1
- Forks: 4
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-DynamicGraphLearning - [code
README
# DiskNet
The repo is the official implementation for our paper: "Predicting Long-term Dynamics of Complex Networks via Identifying Skeleton in Hyperbolic Space” (KDD 2024).
## Overall Architecture
DiskNet: (1) Hyperbolic Renormalization Group, which identifies the representation and skeleton of network dynamics; (2) Neural Dynamics on Skeleton, which models the dynamics of super-nodes on the skeleton; and (3) Degree-based Super-Resolution, which lifts the predicted values of super-nodes to the original nodes.
![architecture](./asset/architecture.png)
## Environment Setup
```
conda create --name --file requirement.txt
```## Usage
**Config:**
graph_type: `BA `, `WS`, `Drosophila`, `Social`, `Web`, `PowerGrid` or `Airport`;
dynamics: `HindmarshRose`, `FitzHughNagumo` or `CoupledRossler`
**Run:**
```shell
python main.py
```## Citation
If you find this repo helpful, please cite our paper.
```
@inproceedings{li2024predicting,
title={Predicting Long-term Dynamics of Complex Networks via Identifying Skeleton in Hyperbolic Space},
author={Li, Ruikun and Wang, Huandong and Piao, Jinghua and Liao, Qingmin and Li, Yong},
booktitle={Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
pages={1655--1666},
year={2024}
}
```