Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tsudalab/bpbi
Binding pose prediction by best arm identification
https://github.com/tsudalab/bpbi
Last synced: 3 months ago
JSON representation
Binding pose prediction by best arm identification
- Host: GitHub
- URL: https://github.com/tsudalab/bpbi
- Owner: tsudalab
- Created: 2017-05-01T05:51:42.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2017-10-18T09:00:37.000Z (about 7 years ago)
- Last Synced: 2024-07-16T23:02:39.148Z (4 months ago)
- Language: Python
- Size: 12.2 MB
- Stars: 4
- Watchers: 7
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-drug-discovery - [Python Reference
README
# bpbi
Binding Pose prediction as Best-arm Identification# Required Packages
python >= 2.7.x
numpy >= 1.11.x
pandas >= 1.11.x# Installation
Download or clone the github repository, e.g. git clone https://github.com/tsudalab/bpbi# Usage
Run test.py for searching the binding pose using best-arm identification algorithms.# References
K. Terayama, H. Iwata, M. Araki, Y. Okuno, K. Tsuda, "Machine Learning Accelerates MD-based Binding-Pose Prediction between Ligands and Proteins", Bioinformatics, 2017. (https://doi.org/10.1093/bioinformatics/btx638)
Bubeck, S.; Munos, R.; Stoltz, G. "Pure exploration in multi-armed bandits problems." ALT, pp 23–37, 2009.
Audibert, J.-Y.; Bubeck, S. "Best Arm Identification in Multi-Armed Bandits." COLT, 2010.
Gabillon, V.; Ghavamzadeh, M.; Lazaric, A. "Best arm identification: A unified approach to fixed budget and fixed confidence." NIPS, pp.3212–3220, 2012.