Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tsudalab/pdc
Efficient phase diagram construction based on uncertainty sampling
https://github.com/tsudalab/pdc
Last synced: about 1 month ago
JSON representation
Efficient phase diagram construction based on uncertainty sampling
- Host: GitHub
- URL: https://github.com/tsudalab/pdc
- Owner: tsudalab
- Created: 2018-11-20T04:51:29.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2022-07-26T00:23:30.000Z (over 2 years ago)
- Last Synced: 2023-10-20T23:33:29.646Z (about 1 year ago)
- Language: Jupyter Notebook
- Size: 2 MB
- Stars: 13
- Watchers: 10
- Forks: 5
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# PDC
Efficient phase diagram construction based on uncertainty sampling## USAGE
- The following command outputs the next point in 'next_point.csv' without parameter constraint.
- `python PDC_sampler.py data.csv --estimation [Estimation method] --sampling [Sampling method]`
- Estimation method: LP or LS
- Sampling method: LC, MS, EA, or RS
- The following command outputs the next point in 'next_point.csv' with parameter constraint.
- `python PDC_sampler.py data.csv --estimation [Estimation method] --sampling [Sampling method] --parameter_constraint --prev_point '20, 100'`
- The following command outputs the multiple next points in 'next_point.csv' without parameter constraint.
- `python PDC_sampler.py data.csv --estimation [Estimation method] --sampling [Sampling method] --multi_method [Multiple method] --multi_num [Number of suggestions] --NE_k [k]`
- Estimation method: LP or LS
- Sampling method: LC, MS, EA, or RS
- Multiple method: OU or NE (OU: Only US ranking, NE: Neighobr Exclusion)
- Number of suggestions: integer
- k: k value in neighbor exclusion## Reference
Kei Terayama, Ryo Tamura, Yoshitaro Nose, Hidenori Hiramatsu, Hideo Hosono, Yasushi Okuno, Koji Tsuda, [Efficient Construction Method for Phase Diagrams Using Uncertainty Sampling](https://doi.org/10.1103/PhysRevMaterials.3.033802), *Physical Review Materials*, Vol. 3, No. 3, 033802, 2019. [DOI: 10.1103/PhysRevMaterials.3.033802]