Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tugstugi/pytorch-dc-tts
Text to Speech with PyTorch (English and Mongolian)
https://github.com/tugstugi/pytorch-dc-tts
convolutional-neural-networks deep-learning mongolian python pytorch speech-synthesis text-to-speech tts
Last synced: about 13 hours ago
JSON representation
Text to Speech with PyTorch (English and Mongolian)
- Host: GitHub
- URL: https://github.com/tugstugi/pytorch-dc-tts
- Owner: tugstugi
- License: mit
- Created: 2018-08-10T17:05:24.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2021-09-12T17:25:08.000Z (about 3 years ago)
- Last Synced: 2023-11-07T19:20:03.361Z (about 1 year ago)
- Topics: convolutional-neural-networks, deep-learning, mongolian, python, pytorch, speech-synthesis, text-to-speech, tts
- Language: Jupyter Notebook
- Homepage:
- Size: 11.3 MB
- Stars: 174
- Watchers: 13
- Forks: 71
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
PyTorch implementation of
[Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention](https://arxiv.org/abs/1710.08969)
based partially on the following projects:
* https://github.com/Kyubyong/dc_tts (audio pre processing)
* https://github.com/r9y9/deepvoice3_pytorch (data loader sampler)## Online Text-To-Speech Demo
The following notebooks are executable on [https://colab.research.google.com ](https://colab.research.google.com):
* [Mongolian Male Voice TTS Demo](https://colab.research.google.com/github/tugstugi/pytorch-dc-tts/blob/master/notebooks/MongolianTTS.ipynb)
* [English Female Voice TTS Demo (LJ-Speech)](https://colab.research.google.com/github/tugstugi/pytorch-dc-tts/blob/master/notebooks/EnglishTTS.ipynb)For audio samples and pretrained models, visit the above notebook links.
## Training/Synthesizing English Text-To-Speech
The English TTS uses the [LJ-Speech](https://keithito.com/LJ-Speech-Dataset/) dataset.
1. Download the dataset: `python dl_and_preprop_dataset.py --dataset=ljspeech`
2. Train the Text2Mel model: `python train-text2mel.py --dataset=ljspeech`
3. Train the SSRN model: `python train-ssrn.py --dataset=ljspeech`
4. Synthesize sentences: `python synthesize.py --dataset=ljspeech`
* The WAV files are saved in the `samples` folder.## Training/Synthesizing Mongolian Text-To-Speech
The Mongolian text-to-speech uses 5 hours audio from the [Mongolian Bible](https://www.bible.com/mn/versions/1590-2013-ariun-bibli-2013).
1. Download the dataset: `python dl_and_preprop_dataset.py --dataset=mbspeech`
2. Train the Text2Mel model: `python train-text2mel.py --dataset=mbspeech`
3. Train the SSRN model: `python train-ssrn.py --dataset=mbspeech`
4. Synthesize sentences: `python synthesize.py --dataset=mbspeech`
* The WAV files are saved in the `samples` folder.