https://github.com/tupui/otsensitivity
OpenTURNS module on Sensitivity Analysis
https://github.com/tupui/otsensitivity
Last synced: about 2 months ago
JSON representation
OpenTURNS module on Sensitivity Analysis
- Host: GitHub
- URL: https://github.com/tupui/otsensitivity
- Owner: tupui
- License: lgpl-3.0
- Created: 2019-03-20T10:31:59.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2023-08-08T22:34:42.000Z (almost 2 years ago)
- Last Synced: 2025-03-28T17:47:39.596Z (2 months ago)
- Language: Python
- Size: 2.22 MB
- Stars: 1
- Watchers: 1
- Forks: 3
- Open Issues: 5
-
Metadata Files:
- Readme: README.rst
- License: COPYING
Awesome Lists containing this project
README
|CI|_ |Python|_ |License|_
.. |CI| image:: https://circleci.com/gh/tupui/otsensitivity.svg?style=svg
.. _CI: https://circleci.com/gh/tupui/otsensitivity.. |Python| image:: https://img.shields.io/badge/python-2.7,_3.7-blue.svg
.. _Python: https://python.org.. |License| image:: https://img.shields.io/badge/license-LGPL-blue.svg
.. _License: https://opensource.org/licenses/LGPLotSensitivity
=============What is it?
-----------This project implements Sensitivity Analysis methods.
It is based on `OpenTURNS `_.The simplest analysis is to visualize how the quantity of interest respond
individually to each input parameter:.. code-block:: python
pairplot(sample, data)
.. image:: doc/images/ishigami_pairplot.png
This analysis can be completed by quantitative information. Variance-based
analysis is commonly used:.. code-block:: python
s, st = sobol_saltelli(function, 1000, 3, [[-np.pi, -np.pi, -np.pi],
[np.pi, np.pi, np.pi]])
plot_indices([s, st]).. image:: doc/images/ishigami_indices.png
It is possible to use a polar coordinate system:
.. code-block:: python
plot_indices([s, st], polar=True)
.. image:: doc/images/ishigami_indices-polar.png
In case of an already existing sample, one can use density based measures:
.. code-block:: python
momi = moment_independent(X, Y)
delta = momi[2]['Delta']
plot_indices([delta]).. image:: doc/images/ishigami_moment.png
This method use not only the variance but all the PDF in order to compute
sensitivity information. Also, it does not require the use of any particlar
sampling design.How to install?
---------------Requirements
............The dependencies are:
- Python >= 2.7 or >= 3.3
- `numpy `_ >= 0.10
- `scipy `_ >= 0.15
- `OpenTURNS `_ >= 1.12
- `matplotlib `_ >= 1.5.3Installation
............Using the latest python version is prefered! Then to install::
git clone [email protected]:.../otsensitivity.git
cd otsensitivity
python setup.py install