https://github.com/tushar-shinde31/blood_group_detection_using_fingerprint-flask-
A Flask-based ML application that predicts blood groups using fingerprint images. It integrates a TensorFlow (Keras) model with 89% accuracy, featuring user authentication, database management with Flask SQLAlchemy & SQLite, and a frontend built using flask. ๐
https://github.com/tushar-shinde31/blood_group_detection_using_fingerprint-flask-
css deep-learning flask flask-application html javascript kaggl machine-learning neural-networks svm svm-model third-year-project vgg16
Last synced: 3 months ago
JSON representation
A Flask-based ML application that predicts blood groups using fingerprint images. It integrates a TensorFlow (Keras) model with 89% accuracy, featuring user authentication, database management with Flask SQLAlchemy & SQLite, and a frontend built using flask. ๐
- Host: GitHub
- URL: https://github.com/tushar-shinde31/blood_group_detection_using_fingerprint-flask-
- Owner: Tushar-Shinde31
- Created: 2024-12-25T16:34:13.000Z (10 months ago)
- Default Branch: main
- Last Pushed: 2025-04-28T16:44:09.000Z (5 months ago)
- Last Synced: 2025-04-28T17:46:25.574Z (5 months ago)
- Topics: css, deep-learning, flask, flask-application, html, javascript, kaggl, machine-learning, neural-networks, svm, svm-model, third-year-project, vgg16
- Language: HTML
- Homepage:
- Size: 6.6 MB
- Stars: 7
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# ๐ฉธ Blood Group Prediction Using Fingerprint
## ๐ Project Overview
This project introduces a **non-invasive** approach to blood group prediction using **fingerprint image processing** and **machine learning**. By leveraging **Convolutional Neural Networks (CNNs)**, it classifies fingerprint patterns into **eight common blood groups** (A+, A-, B+, B-, AB+, AB-, O+, O-), offering a **quick** and **accessible** alternative to traditional methods.
## ๐ฅ Demo Video
[Watch the demo on YouTube](https://youtu.be/BCwa5xclfk0?si=_o926diqvEMfQuql)---
## ๐ฏ Objectives
โ **Rapid Blood Group Identification** โ Provides a fast and accurate alternative to traditional methods.โ **Accessibility in Remote Areas** โ Enables blood group prediction without lab facilities or skilled personnel.
โ **Integration with Portable Devices** โ Supports point-of-care diagnostics in clinics and mobile units.
โ **Safety and Scalability** โ Reduces contamination risks and ensures adaptability across healthcare settings.
โ **Biometric and Medical Synergy** โ Combines biometrics and machine learning for improved diagnostics.
---
## ๐ ๏ธ Tech Stack
### ๐ Frontend:
- HTML
- CSS
- JavaScript### ๐ฅ Backend:
- Flask
- SQLAlchemy
- SQLite### ๐ Machine Learning (Model Development):
- TensorFlow / Keras
- Google Colab---
## ๐ Model Performance
| ๐ง Model | ๐ฏ Testing Accuracy | ๐ Validation Accuracy |
|--------------------------------------|---------------------|------------------------|
| **VGG16** | โ 88.72% | โ 89.50% |
| **AlexNet** | ๐ด 12.47% | ๐ด 12.49% |
| **ResNet50** | ๐ก 61.19% | ๐ก 62.70% |
| **Hybrid Model (EfficientNetB0 + SVM)** | ๐ต 22.29% | ๐ต 22.81% |---
## ๐ Dataset
[๐ Fingerprint Dataset](https://www.kaggle.com/datasets/rajumavinmar/finger-print-based-blood-group-dataset)### ๐ Dataset Overview:
---
## ๐ธ Screenshots
### ๐ Authentication Page

### ๐ Prediction Result Page
### ๐ค Upload Fingerprint
---
## ๐ Future Improvements
- ๐ **Expand the dataset** for better generalization.
- ๐งช **Experiment with advanced models** to improve accuracy.
- ๐ **Deploy the model** in a live environment for real-world use.---
## ๐ Contact
### ๐ค **Tushar Shinde**
๐ง [tusharshinde2250@gmail.com](mailto:tusharshinde2250@gmail.com)
๐ [LinkedIn](https://www.linkedin.com/in/tushar-shinde-262335257/)### ๐ค **Anjali Maske**
๐ง [aamaske50@gmail.com](mailto:aamaske50@gmail.com)
๐ [LinkedIn](https://www.linkedin.com/in/anjali-maske/)---
โญ๏ธ **Feel free to contribute and star the repository if you find it helpful!**