Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/tushar2704/insightfuldata


https://github.com/tushar2704/insightfuldata

Last synced: 19 days ago
JSON representation

Awesome Lists containing this project

README

        

# InsightfulData

A powerful Retrieval Augmented Generation (RAG) system for comprehensive data analysis and intelligent insights generation.

## πŸš€ Features

- Advanced document retrieval and processing
- Intelligent query understanding and response generation
- Multi-format data support (PDF, CSV, TXT, etc.)
- Interactive data visualization
- Custom knowledge base integration
- Real-time analysis capabilities
- API integration support

## πŸ› οΈ Tech Stack

- **Backend**: Python, FastAPI
- **Vector Database**: Pinecone
- **LLM Integration**: OpenAI GPT
- **Embeddings**: Sentence Transformers
- **Frontend**: React with TypeScript
- **Data Processing**: Pandas, NumPy
- **Visualization**: Plotly, D3.js
- **Database**: PostgreSQL

## πŸ“‹ Prerequisites

- Python 3.9+
- Node.js 16+
- PostgreSQL 13+
- OpenAI API key
- Pinecone API key

## πŸ”§ Installation

1. Clone the repository
```bash
git clone https://github.com/tushar2704/InsightfulData.git
cd InsightfulData
```

2. Set up virtual environment
```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
```

3. Install dependencies
```bash
pip install -r requirements.txt
cd frontend && npm install
```

4. Configure environment variables
```bash
cp .env.example .env
# Edit .env with your API keys and configuration
```

## πŸš€ Quick Start

1. Start the backend server
```bash
python run.py
```

2. Launch the frontend application
```bash
cd frontend
npm start
```

3. Access the application at `http://localhost:3000`

## πŸ” Usage

```python
from insightful_data import DataAnalyzer

# Initialize the analyzer
analyzer = DataAnalyzer(api_key="your-api-key")

# Load and process data
analyzer.load_data("path/to/your/data")
analyzer.process()

# Generate insights
results = analyzer.generate_insights()
```

## πŸ“Š Example Analysis

```python
# Perform sentiment analysis
sentiment_results = analyzer.analyze_sentiment(text_data)

# Generate topic clusters
topics = analyzer.generate_topics(document_collection)

# Create visualization
analyzer.visualize(data, chart_type="bar")
```

## 🌟 Key Capabilities

- **Intelligent Data Processing**: Advanced algorithms for data cleaning and preparation
- **Context-Aware Analysis**: Understanding complex relationships in your data
- **Custom Knowledge Integration**: Ability to incorporate domain-specific knowledge
- **Interactive Visualizations**: Dynamic and responsive data visualization
- **Automated Reporting**: Generate comprehensive analysis reports

## πŸ” Security

- End-to-end encryption
- Secure API authentication
- Regular security audits
- GDPR compliance
- Data anonymization options

## 🀝 Contributing

1. Fork the repository
2. Create your feature branch (`git checkout -b feature/AmazingFeature`)
3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request

## πŸ“ License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## πŸ™ Acknowledgments

- OpenAI for LLM capabilities
- Pinecone for vector database solutions
- The open-source community

## πŸ“ž Support

- Documentation: [docs.insightfuldata.com](docs.insightfuldata.com)
- Email: [email protected]
- GitHub Issues: For bug reports and feature requests

## πŸ—ΊοΈ Roadmap

- [ ] Advanced NLP capabilities
- [ ] Multi-language support
- [ ] Real-time collaboration features
- [ ] Enhanced visualization options
- [ ] Mobile application development

---

Made with ❀️ by [Tushar Aggarwal]
```

This README.md provides a comprehensive overview of your InsightfulData project, including:

- Clear project description and features
- Detailed installation instructions
- Usage examples with code snippets
- Security considerations
- Contributing guidelines
- Future roadmap

The format is professional and well-structured, using emojis strategically to improve readability while maintaining a technical focus. Remember to customize the placeholder content (API endpoints, email addresses, etc.) with your actual project details.