Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tushar2704/machinealgobox
Explore common ML algorithms, from scratch implementations to real-world use cases, Each algorithm is accompanied by clear explanations, code implementations, and real-world use cases, enabling you to grasp their underlying principles and apply them to different problem domains.
https://github.com/tushar2704/machinealgobox
algorithms alogorithms-implemented artificial-intelligence data data-analytics data-engineering data-science deployment machine-learning-algorithms mlops python r streamlit streamlit-tushar2704 tushar2704
Last synced: 14 days ago
JSON representation
Explore common ML algorithms, from scratch implementations to real-world use cases, Each algorithm is accompanied by clear explanations, code implementations, and real-world use cases, enabling you to grasp their underlying principles and apply them to different problem domains.
- Host: GitHub
- URL: https://github.com/tushar2704/machinealgobox
- Owner: tushar2704
- License: mit
- Created: 2023-06-02T03:47:01.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-12-26T22:16:33.000Z (about 1 year ago)
- Last Synced: 2024-05-11T05:53:46.610Z (8 months ago)
- Topics: algorithms, alogorithms-implemented, artificial-intelligence, data, data-analytics, data-engineering, data-science, deployment, machine-learning-algorithms, mlops, python, r, streamlit, streamlit-tushar2704, tushar2704
- Language: Python
- Homepage: https://www.tushar-aggarwal.com/
- Size: 13.5 MB
- Stars: 6
- Watchers: 4
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# MachineAlgoBox - Guides, Codes and Use cases of Most Common Machine Learning Algorithms
## Deployment [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://machinealgobox.streamlit.app/)
MachineAlgoBox is a comprehensive collection of the most common machine learning algorithms by [Tushar Aggarwal](https://www.tushar-aggarwal.com/) , implemented from scratch and accompanied by detailed use cases. This repository serves as a valuable resource for both beginners and experienced practitioners, providing a hands-on approach to understanding and implementing various machine learning techniques. Explore a wide range of algorithms, from classic ones like linear regression and decision trees to advanced methods such as neural networks and support vector machines. Each algorithm is accompanied by clear explanations, code implementations, and real-world use cases, enabling you to grasp their underlying principles and apply them to different problem domains. Whether you're seeking to learn, practice, or explore machine learning, MachineAlgoBox is your go-to repository for understanding and working with diverse algorithms.
## Key Features
- **From Scratch Implementations:** Gain a deep understanding of algorithms by exploring their step-by-step implementations from scratch.
- **Real-World Use Cases:** Discover practical use cases for each algorithm, providing insights into how they can be applied to solve real-world problems.
- **Clear Explanations:** Find clear and concise explanations for each algorithm, helping you grasp their underlying principles.
- **Code Examples:** Access well-documented code examples that you can run and experiment with.
- **Diverse Algorithm Collection:** Explore a wide range of algorithms, including linear regression, decision trees, neural networks, support vector machines, and more.## Get Started
2. Explore the algorithm folders and choose the one you're interested in.
3. Follow the provided instructions in the README file of each algorithm folder to run and understand the algorithm.
4. Dive into the use cases folder to see the algorithms in action in real-world scenarios.## Contents
### 1. Adaboost
![1](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/4993b4eb-b66e-4c67-b1e0-48692f55cfe9)
![2](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/6916eb9d-b0df-44c1-856b-a6fb19932598)### 2. AGGLOMERATIVE CLUSTERING
![4](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/a45ba404-521b-404b-b223-8cab560dc117)
![5](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/c03b9a9a-47f9-412c-9ae2-367e9af60712)### 3. DBSCAN
![DBSCAN](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/0a597d76-09eb-4cc1-a433-a9161675b9ea)
![DBSCAN (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/6d7bfb37-0e16-4129-b6fd-2afce8a98661)### 4. DECISION TREE
![DECISION TREE](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/da34463b-e0a0-4558-969d-6328453facad)
![DECISION TREE (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/4e42ee84-641c-4962-8f16-97b67b121295)### 5.DEEP Q Learning
![DEEP Q-LEARNING](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/13d5ccf6-82f2-4af8-94df-317437a3be31)
![DEEP Q-LEARNING (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/f976847f-cb20-45db-8ab9-18b6a75667c4)
![DEEP Q-LEARNING (3)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/897e38b6-6487-40b9-a363-356f3cbe5a5a)### 6.FACTOR ANALYSIS OF CORRESPONDENCES
![FACTOR ANALYSIS OF CORRESPONDENCES](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/eecedb45-7a97-4606-a469-8bd67b0f5a8e)
![FACTOR ANALYSIS OF CORRESPONDENCES (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/26f48065-f122-4b38-97d7-683109035b9b)### 7.GAN
![GAN](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/24c0565d-ef78-43d0-b43e-6db0654436a8)
![GAN (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/a671fbb9-1d3d-4df9-b88d-3ddcffe75b5a)
![GAN (3)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/f981a1f7-28b0-4c71-ac86-5e9f36d8ecff)### 8.GMM
![GMM](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/6e6ec95e-7c04-487e-aa9b-23825c5ad70b)
![GMM (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/4487a090-8d76-4e66-887d-07afa0574528)### 9.GNN
![GRAPH NEURAL NETWORKS](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/44029f83-c05f-4891-b4a9-3d17cbc917d7)
![GRAPH NEURAL NETWORKS (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/47ea904e-6851-4226-949c-60dcc8b95238)
![GRAPH NEURAL NETWORKS (3)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/bf50d3f2-c60f-4bc5-83e6-68c129495c93)### 10.GRADIENT DESCENT
![GRADIENT DESCENT](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/5b0c2245-d6c2-4253-a98f-337bc9c6d7cd)
![GRADIENT DESCENT (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/4d75d6cc-c7c6-43d9-9451-57ada24ce2e5)### 11.HIERARCHICAL CLUSTERING
![HIERARCHICAL CLUSTERING](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/92e872ea-0398-459c-bf73-c1324cbae70b)
![HIERARCHICAL CLUSTERING (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/bec8aae7-1fe7-4336-8f2c-72e0016612f9)### 12.HIDDEN MARKOV MODEL
![HIDDEN MARKOV MODEL (HMM)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/24cb0481-3bde-4409-9f43-8b919f6f05cf)
![HIDDEN MARKOV MODEL (HMM) (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/75ab95ac-7a39-455d-84b8-e09c03aa3707)### 13.ISOLATION FOREST
![ISOLATION FOREST](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/4e38233f-2b37-4033-b26c-bba076e2e060)
![ISOLATION FOREST (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/ec95aed9-57e8-4874-a4f4-c3a903de7d8f)### 14.INDEPENDENT COMPONENT ANALYSIS
![INDEPENDENT COMPONENT ANALYSIS](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/88f0df55-a2ea-44c9-85c2-a16d231a95d6)
![INDEPENDENT COMPONENT ANALYSIS (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/d25e35ee-ab90-46a5-87be-9407cefe80aa)### 15.K-MEANS
![K-MEANS](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/a3f055cc-1cc9-4f20-88bb-bcaf6f04e73f)
![K-MEANS (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/52a8a35a-706b-463f-966c-52707619d661)### 16.K-NEAREST NEIGHBOUR
![K-NEAREST NEIGHBOUR](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/4534a439-3df8-43a3-a5af-97ceae0ab3e1)
![K-NEAREST NEIGHBOUR (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/135c8a6f-c8e5-4f2d-b01a-2a15c98866db)
### 17.MEAN SHIFT
![MEAN SHIFT](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/204dcd21-ba31-4d6e-b496-bc6466b99c4d)
![MEAN SHIFT (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/db6ed700-5850-4f58-a5d6-6879fdb1aad2)### 18.MOBILENET
![MOBILENET](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/8ad47825-f910-4a84-94b9-debe8ca25f58)
![MOBILENET (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/a26093ed-993f-4dae-bb08-71455a009934)### 19.MULTIMODAL PARALLEL NETWORK
![MULTIMODAL PARALLEL NETWORK](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/07eb33a3-a02f-47ee-826e-09eb191d397c)
![MULTIMODAL PARALLEL NETWORK (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/bdeca537-289a-4401-820d-2d48b7d98f7a)### 20.NAIVE BAYES CLASSIFIERS
![NAIVE BAYES CLASSIFIERS](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/617f0f84-f759-422c-ba59-4ff7a6f70732)
![NAIVE BAYES CLASSIFIERS (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/9b1c39d8-3482-4939-87b0-baf809e2da9a)### 21.PRINCIPAL COMPONENT ANALYSIS
![PRINCIPAL COMPONENT ANALYSIS](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/a263e4e4-1129-42f3-946b-15704fc9fd43)
![PRINCIPAL COMPONENT ANALYSIS (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/69a3c70e-88c2-4a46-8d8a-8d494384ee93)### 22.PROXIMAL POLICY OPTIMIZATION
![PROXIMAL POLICY OPTIMIZATION](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/bd5e70a6-39b6-4050-bac2-46e13b6061a1)
![PROXIMAL POLICY OPTIMIZATION (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/cbba9571-7c31-4a95-a7c1-71f315801e1c)
![PROXIMAL POLICY OPTIMIZATION (3)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/d326e6f2-2efd-4cd7-9cc5-7c209a077b7f)### 23.Q-LEARNING
![Q-LEARNING](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/6de6fd9e-f939-4e94-94da-02130dea38a7)
![Q-LEARNING (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/ffcb02f6-9777-4efd-af7b-f623a003900d)
![Uploading Q-LEARNING (3).png…]()### 24.RANDOM FORESTS
![RANDOM FORESTS](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/f832ec3c-fef1-4556-bac7-3aa031fda3fb)
![RANDOM FORESTS (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/5a70f104-fd3b-4c62-9ab1-c6b88c11e7e1)### 25.RECURRENT NEURAL NETWORK
![RECURRENT NEURAL NETWORK](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/2766f77a-58a8-42b2-bc21-0153615e0984)
![RECURRENT NEURAL NETWORK (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/9dc82151-b578-4f6d-8ee6-95b6581a8b07)### 26.RESNET
![RESNET](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/38e7b7d4-964a-4aa9-8e64-a1ded77c7785)
![RESNET (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/cddc77fc-cd5a-45c6-9d14-9d5b6d142746)
![RESNET (3)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/671a61a8-415c-4d07-95fd-492514c031e2)### 27.STOCHASTIC GRADIENT DESCENT
![STOCHASTIC GRADIENT DESCENT](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/a371d6ec-ad29-45af-a609-5872a40ccadf)
![STOCHASTIC GRADIENT DESCENT (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/fd462daf-2f13-42a6-a60c-c1fc2d06dd9e)### 28.SUPPORT VECTOR MACHINE
![SUPPORT VECTOR MACHINE](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/d9f657e2-42b6-41d1-9d45-f8307c583dcf)
![SUPPORT VECTOR MACHINE (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/0474beec-6f60-4c25-9768-8deef8cd9caa)### 29. WAVENET
![WAVENET](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/54c46bc3-3a7b-4b0d-b235-ca6ed29b5131)
![Uploading WAVENET (2).png…]()### 30.ARMA_ARIMA MODEL
![ARMA_ARIMA MODEL](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/f1ac22a8-2de6-433b-aa4c-4c2e6dda8e8d)
![ARMA_ARIMA MODEL (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/1166897e-2971-41c9-9892-8efedaafb4b9)
![ARMA_ARIMA MODEL (3)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/e9fb1d86-6ff8-4c9b-a623-99eb57292231)### 31.BERT
![BERT](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/99eb817d-6aee-426c-ac9b-6044a6e81644)
![Uploading BERT (2).png…]()### 32.LSTM
![LSTM](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/3ffd5555-e974-463e-89eb-f40bcaaff8a1)
![LSTM (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/ae5654f7-5f47-4ef4-bad4-65342c5e76c1)
![LSTM (3)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/95e2b618-5ea2-4424-a3ba-ab27b01e5204)### 33.ADAM OPTIMIZATION
![ADAM OPTIMIZATION](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/ab242357-7a52-4937-b1d7-93b455f73d15)
![ADAM OPTIMIZATION (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/a2360a35-581f-400b-81d6-b292fc1608c5)### 34.XGBOOST
![XGBOOST](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/eeac3fc5-9f9a-4001-b491-689bc7505a67)
![XGBOOST (2)](https://github.com/tushar2704/MachineAlgoBox/assets/66141195/bdecbd43-ded1-40c0-b30f-4c7ec3ce462b)## Author
- ©2023 Tushar Aggarwal. All rights reserved
- [LinkedIn](https://www.linkedin.com/in/tusharaggarwalinseec/)
- [Medium](https://medium.com/@tushar_aggarwal)
- [Tushar-Aggarwal.com](https://www.tushar-aggarwal.com/)
- [Kaggle](https://www.kaggle.com/tusharaggarwal27)## Contributing
Contributions to MachineAlgoBox are warmly welcome! Whether it's fixing a bug, adding a new algorithm, or improving the documentation, every contribution is valuable.
## LicenseThis repository is licensed under the [MIT License](LICENSE).
## Connect with Us
Got questions, suggestions, or feedback? We'd love to hear from you! Connect with us on [Twitter](https://twitter.com/MachineAlgoBox) or [open an issue](https://github.com/your-username/MachineAlgoBox/issues) here on GitHub.