Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tushar2704/vision-chat
Vision Chat
https://github.com/tushar2704/vision-chat
streamlit streamlit-tushar2704 tushar2704
Last synced: about 1 month ago
JSON representation
Vision Chat
- Host: GitHub
- URL: https://github.com/tushar2704/vision-chat
- Owner: tushar2704
- License: mit
- Created: 2024-12-10T05:52:25.000Z (about 1 month ago)
- Default Branch: main
- Last Pushed: 2024-12-11T10:56:42.000Z (about 1 month ago)
- Last Synced: 2024-12-11T11:27:43.646Z (about 1 month ago)
- Topics: streamlit, streamlit-tushar2704, tushar2704
- Language: Python
- Homepage: https://vision-chat.streamlit.app
- Size: 8.79 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# VisionChat AI Image Analysis 🖼️🤖
## Overview
VisionChat is an intelligent Streamlit application that leverages advanced AI models for comprehensive image analysis. The application provides multiple modules for processing and understanding visual content using cutting-edge vision and language models.## Features 🌟
- **Image Analysis Module**: Upload and analyze images with detailed AI insights
- **Vision LLM Module**: Perform advanced image classification and interpretation
- **Camera Capture Module**: Real-time image capture and analysis## Prerequisites 📋
- Python 3.8+
- Groq API Key## Installation 🛠️
### 1. Clone the Repository
```bash
git clone https://github.com/tushar2704/visionchat.git
cd visionchat-ai
```### 2. Create Virtual Environment
```bash
python -m venv venv
source venv/bin/activate # On Windows, use `venv\Scripts\activate`
```### 3. Install Dependencies
```bash
pip install -r requirements.txt
```### 4. Configure Environment Variables
Create a `.env` file or use Streamlit secrets to store your Groq API key:
```
GROQ_API_KEY=your_groq_api_key_here
```## Usage 🚀
### Run the Application
```bash
streamlit run app.py
```### Modules
1. **Image Analysis**: Upload and analyze images
2. **Vision LLM**: Advanced image classification
3. **Capture Analysis**: Camera-based image capture and analysis## Technologies Used 💻
- Streamlit
- Groq AI
- Plotly
- PIL (Python Imaging Library)
- LangChain## Configuration 🔧
- Supports PNG, JPG, JPEG image formats
- Configurable AI analysis parameters## Contributing 🤝
1. Fork the repository
2. Create your feature branch (`git checkout -b feature/AmazingFeature`)
3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request## License 📄
[Specify your project's license here]## Contact 📧
[Tushar Aggarwal](https://www.linkedin.com/in/tusharaggarwalinseec/)## Acknowledgments 🙏
- Groq for providing advanced AI models
- Streamlit for the amazing web application framework