Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tusimple/tusimple-duc
Understanding Convolution for Semantic Segmentation
https://github.com/tusimple/tusimple-duc
cityscapes convolution deep-learning deep-neural-networks mxnet python semantic-segmentation
Last synced: 4 days ago
JSON representation
Understanding Convolution for Semantic Segmentation
- Host: GitHub
- URL: https://github.com/tusimple/tusimple-duc
- Owner: TuSimple
- License: apache-2.0
- Created: 2017-11-07T02:19:43.000Z (about 7 years ago)
- Default Branch: master
- Last Pushed: 2021-10-26T04:02:46.000Z (about 3 years ago)
- Last Synced: 2025-01-11T22:11:45.861Z (11 days ago)
- Topics: cityscapes, convolution, deep-learning, deep-neural-networks, mxnet, python, semantic-segmentation
- Language: Python
- Homepage: https://arxiv.org/abs/1702.08502
- Size: 35.2 KB
- Stars: 613
- Watchers: 25
- Forks: 118
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# TuSimple-DUC
by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell.
## Introduction
This repository is for [Understanding Convolution for Semantic Segmentation](https://arxiv.org/abs/1702.08502) (WACV 2018), which achieved state-of-the-art result on the CityScapes, PASCAL VOC 2012, and Kitti Road benchmark.
## Requirement
We tested our code on:
Ubuntu 16.04, Python 2.7 with
[MXNet (0.11.0)](https://github.com/TuSimple/mxnet), numpy(1.13.1), cv2(3.2.0), PIL(4.2.1), and cython(0.25.2)
## Usage
1. Clone the repository:
```shell
git clone [email protected]:TuSimple/TuSimple-DUC.git
python setup.py develop --user
```2. Download the pretrained model from [Google Drive](https://drive.google.com/drive/folders/0B72xLTlRb0SoREhISlhibFZTRmM?resourcekey=0-g2Fr58Nn591bs5ZvZ0Vlwg&usp=sharing).
3. Build MXNet (only tested on the TuSimple version):
```shell
git clone --recursive [email protected]:TuSimple/mxnet.git
vim make/config.mk (we should have USE_CUDA = 1, modify USE_CUDA_PATH, and have USE_CUDNN = 1 to enable GPU usage.)
make -j
cd python
python setup.py develop --user
```For more MXNet tutorials, please refer to the [official documentation](https://mxnet.incubator.apache.org/install/index.html).
3. Training:
```shell
cd train
python train_model.py ../configs/train/train_cityscapes.cfg
```The paths/dirs in the ``.cfg`` file need to be specified by the user.
4. Testing
```
cd test
python predict_full_image.py ../configs/test/test_full_image.cfg
```The paths/dirs in the ``.cfg`` file need to be specified by the user.
5. Results:
Modify the ``result_dir`` path in the config file to save the label map and visualizations. The expected scores are:
(single scale testing denotes as 'ss' and multiple scale testing denotes as 'ms')
- ResNet101-DUC-HDC on CityScapes testset (mIoU): 79.1(ss) / 80.1(ms)
- ResNet152-DUC on VOC2012 (mIoU): 83.1(ss)## Citation
If you find the repository is useful for your research, please consider citing:
@article{wang2017understanding,
title={Understanding convolution for semantic segmentation},
author={Wang, Panqu and Chen, Pengfei and Yuan, Ye and Liu, Ding and Huang, Zehua and Hou, Xiaodi and Cottrell, Garrison},
journal={arXiv preprint arXiv:1702.08502},
year={2017}
}## Questions
Please contact [email protected] or [email protected] .