Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/twesterhout/lattice-symmetries
A package to simplify working with symmetry-adapted quantum many-body bases. Provides a good foundation for writing custom exact diagonalization and variational Monte Carlo software
https://github.com/twesterhout/lattice-symmetries
bit-manipulation c cpp17 exact-diagonalization lattice-symmetries many-body-physics neural-network permutation quantum-mechanics symmetries symmetry-groups
Last synced: 13 days ago
JSON representation
A package to simplify working with symmetry-adapted quantum many-body bases. Provides a good foundation for writing custom exact diagonalization and variational Monte Carlo software
- Host: GitHub
- URL: https://github.com/twesterhout/lattice-symmetries
- Owner: twesterhout
- License: bsd-3-clause
- Created: 2020-08-12T20:50:30.000Z (about 4 years ago)
- Default Branch: master
- Last Pushed: 2024-10-26T20:05:27.000Z (13 days ago)
- Last Synced: 2024-10-26T22:10:22.060Z (13 days ago)
- Topics: bit-manipulation, c, cpp17, exact-diagonalization, lattice-symmetries, many-body-physics, neural-network, permutation, quantum-mechanics, symmetries, symmetry-groups
- Language: Haskell
- Homepage:
- Size: 6.24 MB
- Stars: 29
- Watchers: 6
- Forks: 8
- Open Issues: 9
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
> ⚠️ **INFO**
>
> This is a Haskell rewrite of the original
> [lattice-symmetries](https://github.com/twesterhout/lattice-symmetries). At
> some point, this package will completely replace the first version of
> lattice-symmetries.# lattice-symmetries [![Build](https://github.com/twesterhout/lattice-symmetries-haskell/actions/workflows/ci.yml/badge.svg)](https://github.com/twesterhout/lattice-symmetries-haskell/actions/workflows/ci.yml)
[![License](https://img.shields.io/badge/License-BSD%203--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)A package to simplify working with symmetry-adapted quantum many-body bases.
## Hamiltonians
#### Spins
MathsCode
$$
\mathbf{S}_i \cdot \mathbf{S}_j = S^x_i S^x_j + S^y_i S^y_j + S^z_i S^z_j
$$`"Sˣ₀ Sˣ₁ + Sʸ₀ Sʸ₁ + Sᶻ₀ Sᶻ₁"`
or
`"Sx0 Sx0 + Sy1 Sy1 + Sz0 Sz1"`$$
\mathbf{S}_i \cdot \mathbf{S}_j = \frac{1}{4} \left( \sigma^x_i \sigma^x_j + \sigma^y_i \sigma^y_j + \sigma^z_i \sigma^z_j \right)
$$`"0.25 (σˣ₀ σˣ₁ + σʸ₀ σʸ₁ + σᶻ₀ σᶻ₁)"`
$$
\sigma^{+}_i \sigma^{-}_j
$$`"σ⁺₀ σ⁻₁"` or
`"\sigma^+_0 \sigma^-_1"` or
`"\sigma+0 \sigma-1"`#### Electrons
MathsCode
$$
c^\dagger_{i\uparrow}c_{j\uparrow} + c^\dagger_{i\downarrow}c_{j\downarrow}
$$`"c†₀↑ c₁↑ + c†₀↓ c₁↓"`
$$
n_{i\uparrow} n_{i\downarrow}
$$`"n₀↑ n₀↓"` or
`"n0up n0down"`