Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/twjiang/graphSAGE-pytorch

A PyTorch implementation of GraphSAGE. This package contains a PyTorch implementation of GraphSAGE.
https://github.com/twjiang/graphSAGE-pytorch

Last synced: about 8 hours ago
JSON representation

A PyTorch implementation of GraphSAGE. This package contains a PyTorch implementation of GraphSAGE.

Awesome Lists containing this project

README

        

## A PyTorch implementation of GraphSAGE

This package contains a PyTorch implementation of [GraphSAGE](http://snap.stanford.edu/graphsage/).

#### Authors of this code package:
[Tianwen Jiang](https://github.com/twjiang) ([email protected]),
[Tong Zhao](https://github.com/zhao-tong) ([email protected]),
[Daheng Wang](https://github.com/adamwang0705) ([email protected]).

## Environment settings

- python==3.6.8
- pytorch==1.0.0

## Basic Usage

**Main Parameters:**

```
--dataSet The input graph dataset. (default: cora)
--agg_func The aggregate function. (default: Mean aggregater)
--epochs Number of epochs. (default: 50)
--b_sz Batch size. (default: 20)
--seed Random seed. (default: 824)
--unsup_loss The loss function for unsupervised learning. ('margin' or 'normal', default: normal)
--config Config file. (default: ./src/experiments.conf)
--cuda Use GPU if declared.
```

**Learning Method**

The user can specify a learning method by --learn_method, 'sup' is for supervised learning, 'unsup' is for unsupervised learning, and 'plus_unsup' is for jointly learning the loss of supervised and unsupervised method.

**Example Usage**

To run the unsupervised model on Cuda:
```
python -m src.main --epochs 50 --cuda --learn_method unsup
```