Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/twjiang/graphSAGE-pytorch
A PyTorch implementation of GraphSAGE. This package contains a PyTorch implementation of GraphSAGE.
https://github.com/twjiang/graphSAGE-pytorch
Last synced: about 8 hours ago
JSON representation
A PyTorch implementation of GraphSAGE. This package contains a PyTorch implementation of GraphSAGE.
- Host: GitHub
- URL: https://github.com/twjiang/graphSAGE-pytorch
- Owner: twjiang
- Created: 2019-03-22T05:59:22.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2023-10-03T23:07:29.000Z (about 1 year ago)
- Last Synced: 2024-08-02T13:16:40.638Z (3 months ago)
- Language: Python
- Homepage:
- Size: 18.1 MB
- Stars: 609
- Watchers: 10
- Forks: 148
- Open Issues: 14
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
## A PyTorch implementation of GraphSAGE
This package contains a PyTorch implementation of [GraphSAGE](http://snap.stanford.edu/graphsage/).
#### Authors of this code package:
[Tianwen Jiang](https://github.com/twjiang) ([email protected]),
[Tong Zhao](https://github.com/zhao-tong) ([email protected]),
[Daheng Wang](https://github.com/adamwang0705) ([email protected]).## Environment settings
- python==3.6.8
- pytorch==1.0.0## Basic Usage
**Main Parameters:**
```
--dataSet The input graph dataset. (default: cora)
--agg_func The aggregate function. (default: Mean aggregater)
--epochs Number of epochs. (default: 50)
--b_sz Batch size. (default: 20)
--seed Random seed. (default: 824)
--unsup_loss The loss function for unsupervised learning. ('margin' or 'normal', default: normal)
--config Config file. (default: ./src/experiments.conf)
--cuda Use GPU if declared.
```**Learning Method**
The user can specify a learning method by --learn_method, 'sup' is for supervised learning, 'unsup' is for unsupervised learning, and 'plus_unsup' is for jointly learning the loss of supervised and unsupervised method.
**Example Usage**
To run the unsupervised model on Cuda:
```
python -m src.main --epochs 50 --cuda --learn_method unsup
```