https://github.com/twseptian/anomaly-detection-analysis
https://github.com/twseptian/anomaly-detection-analysis
Last synced: 3 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/twseptian/anomaly-detection-analysis
- Owner: twseptian
- Created: 2018-07-06T18:00:41.000Z (over 7 years ago)
- Default Branch: master
- Last Pushed: 2018-07-10T03:28:52.000Z (about 7 years ago)
- Last Synced: 2025-05-15T01:40:04.720Z (5 months ago)
- Size: 4.88 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Awesome Machine Learning for Anomaly Detection: [](https://github.com/sindresorhus/awesome)
A curated list of machine learning for anomaly detection resources, inspired by [Awesome Adversarial Machine Learning](https://github.com/yenchenlin/awesome-adversarial-machine-learning) and [Awesome Architecture Search](https://github.com/markdtw/awesome-architecture-search/blob/master/README.md)## Table of Contents
- [Papers](#papers)
- [Datasets](#datasets)## Papers
* [Real-time DDoS attack detection for Cisco IOS using NetFlow](http://ieeexplore.ieee.org/abstract/document/7140420/), D. van der Steeg et al., IFIP/IEEE IM 2015
* [A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data](http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152173), M. Goldstein et al., PloS one, 2016
* [Detection DDoS attacks based on neural-network using Apache Spark](http://ieeexplore.ieee.org/abstract/document/7539833/), C. Hsieh et al., ICASI, 2016
* [Large-scale IP network behavior anomaly detection and identification using substructure-based approach and multivariate time series mining](https://link.springer.com/article/10.1007/s11235-010-9384-1), W. He et al., Telecommunication Systems, 2012
* [A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection](http://ieeexplore.ieee.org/abstract/document/7307098/), A. Buczak et al., IEEE Communications Surveys & Tutorials 2016
* [An Abnormal Network Traffic Detection Algorithm Based on Big Data Analysis](http://eds.a.ebscohost.com/eds/detail/detail?vid=0&sid=63eb62fc-fcc1-4602-ad09-fdf12cca069c%40sessionmgr4006&bdata=Jmxhbmc9emgtdHcmc2l0ZT1lZHMtbGl2ZSZzY29wZT1zaXRl#AN=116795190&db=asr), H. Yao et al., International Journal of Computers, Communications & Control 2016
* [Big data analytics for network anomaly detection from netflow data](http://ieeexplore.ieee.org/abstract/document/8093473/), D. Terzi et al., UBMK 2017
* [FLAME: A Flow-Level Anomaly Modeling Engine](https://www.usenix.org/legacy/event/cset08/tech/full_papers/brauckhoff/brauckhoff_html/), D. Brauckhoff et al., CSET, 2008
* [Characterizing network traffic by means of the NETMINE framework](https://www.sciencedirect.com/science/article/pii/S1389128608004052), D. Apiletti et al., Computer Networks, 2009
* [Machine Learning Approach for IP-Flow Record Anomaly Detection](https://link.springer.com/10.1007%2F978-3-642-20757-0_3), C. Wagner et al., ICRN, 2011
* [Outside the Closed World/ On Using Machine Learning For Network Intrusion Detection](http://ieeexplore.ieee.org/abstract/document/5504793/), R. Sommer et al., IEEE SP, 2010
* [Machine Learning Techniques for Anomaly Detection: An Overview](https://pdfs.semanticscholar.org/0278/bbaf1db5df036f02393679d485260b1daeb7.pdf), S. Omar et al., IJCA, 2013
* [Detection of known and unknown DDoS attacks using Artificial Neural Networks](https://www.sciencedirect.com/science/article/pii/S092523121501053X), A. Saied et al., Neurocomputing, 2015
* [An Anomaly-Based Method for DDoS Attacks Detection using RBF Neural Networks](https://pdfs.semanticscholar.org/636f/4733c2851f5bcdab14481c18bb3aca66ccb2.pdf), R. Karimazad et al., ICNEE, 2011
* [A data mining framework for building intrusion detection models](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=766909), W. Lee et al., IEEE SP, 1999## Datasets
* [DARPA](https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-data-set)
* [KDD Cup 1999](http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html)
* [ISCX IDS](http://www.unb.ca/cic/datasets/ids.html)## Licenses
License[](http://creativecommons.org/publicdomain/zero/1.0/)
To the extent possible under law, I have waived all copyright and related or neighboring rights to this work.