https://github.com/txchen-USTC/MiM-ISTD
Official pytorch code of our paper "MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection"
https://github.com/txchen-USTC/MiM-ISTD
Last synced: about 2 months ago
JSON representation
Official pytorch code of our paper "MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection"
- Host: GitHub
- URL: https://github.com/txchen-USTC/MiM-ISTD
- Owner: txchen-USTC
- License: mit
- Created: 2024-03-04T03:12:15.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2024-12-28T02:24:33.000Z (5 months ago)
- Last Synced: 2024-12-28T03:23:47.169Z (5 months ago)
- Language: Python
- Homepage:
- Size: 632 KB
- Stars: 124
- Watchers: 8
- Forks: 14
- Open Issues: 15
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-state-space-models - Target Detection
README
Official pytorch code of our TGRS 2024 paper "MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection".
[https://ieeexplore.ieee.org/abstract/document/10740056]
## News
* 24-11-01. Our paper get published in IEEE Transactions on Geoscience and Remote Sensing [IF=7.5].
* 24-03-15. We have corrected some errors and updated the whole network structure code of our MiM-ISTD. Feel free to use it, especially to more other tasks!* 24-03-08. Our paper has been released on arXiv.
## A Quick Overview

## Efficiency Advantages

## Detailed structure of our Mamba-in-Mamba design

## Performance Comparison

## Required Environments
```
conda create -n mim python=3.8
conda activate mim
pip install torch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117
pip install packaging
pip install timm==0.4.12
pip install pytest chardet yacs termcolor
pip install submitit tensorboardX
pip install triton==2.0.0
pip install causal_conv1d==1.0.0 # causal_conv1d-1.0.0+cu118torch1.13cxx11abiFALSE-cp38-cp38-linux_x86_64.whl
pip install mamba_ssm==1.0.1 # mmamba_ssm-1.0.1+cu118torch1.13cxx11abiFALSE-cp38-cp38-linux_x86_64.whl
pip install scikit-learn matplotlib thop h5py SimpleITK scikit-image medpy yacs
```The .whl files of causal_conv1d and mamba_ssm could be found here. {[Baidu](https://pan.baidu.com/s/1Uza8g1pkVcbXG1F-2tB0xQ?pwd=p3h9)}
## Checkpoint
A newly retrained MiM checkpoint that maintains relatively high accuracy (around 80% IoU) on the SIRST dataset is available at Baidu Disk: {[Baidu](https://pan.baidu.com/s/13g2v_M9tPxq_ze02fpaYGw)}, extraction code: DY4h.
## Citation
Please cite our paper if you find the repository helpful.
```
@article{chen2024mim,
title={Mim-istd: Mamba-in-mamba for efficient infrared small target detection},
author={Chen, Tianxiang and Ye, Zi and Tan, Zhentao and Gong, Tao and Wu, Yue and Chu, Qi and Liu, Bin and Yu, Nenghai and Ye, Jieping},
journal={IEEE Transactions on Geoscience and Remote Sensing},
year={2024},
publisher={IEEE}
}
```