Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/txchen-USTC/MiM-ISTD
Official pytorch code of our paper "MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection"
https://github.com/txchen-USTC/MiM-ISTD
Last synced: 3 months ago
JSON representation
Official pytorch code of our paper "MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection"
- Host: GitHub
- URL: https://github.com/txchen-USTC/MiM-ISTD
- Owner: txchen-USTC
- License: mit
- Created: 2024-03-04T03:12:15.000Z (11 months ago)
- Default Branch: main
- Last Pushed: 2024-03-25T13:09:16.000Z (10 months ago)
- Last Synced: 2024-08-01T04:02:12.051Z (6 months ago)
- Language: Python
- Homepage:
- Size: 328 KB
- Stars: 96
- Watchers: 8
- Forks: 8
- Open Issues: 11
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- Awesome-state-space-models - Target Detection
README
Official pytorch code of our paper "MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection".
http://arxiv.org/abs/2403.02148
## News
* 24-03-15. We have corrected some errors and updated the whole network structure code of our MiM-ISTD. Feel free to use it, especially to more other tasks!
* 24-03-08. Our paper has been released on arXiv.
## A Quick Overview
![image](https://github.com/txchen-USTC/MiM-ISTD/blob/main/overview.jpg)
## Efficiency Advantages
![image](https://github.com/txchen-USTC/MiM-ISTD/blob/main/efficiency.jpg)
## Required Environments
```
conda create -n mim python=3.8
conda activate mim
pip install torch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117
pip install packaging
pip install timm==0.4.12
pip install pytest chardet yacs termcolor
pip install submitit tensorboardX
pip install triton==2.0.0
pip install causal_conv1d==1.0.0 # causal_conv1d-1.0.0+cu118torch1.13cxx11abiFALSE-cp38-cp38-linux_x86_64.whl
pip install mamba_ssm==1.0.1 # mmamba_ssm-1.0.1+cu118torch1.13cxx11abiFALSE-cp38-cp38-linux_x86_64.whl
pip install scikit-learn matplotlib thop h5py SimpleITK scikit-image medpy yacs
```The .whl files of causal_conv1d and mamba_ssm could be found here. {[Baidu](https://pan.baidu.com/s/1Uza8g1pkVcbXG1F-2tB0xQ?pwd=p3h9)}
## Citation
Please cite our paper if you find the repository helpful.
```
@article{chen2024mim,
title={MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection},
author={Chen, Tianxiang and Tan, Zhentao and Gong, Tao and Chu, Qi and Wu, Yue and Liu, Bin and Ye, Jieping and Yu, Nenghai},
journal={arXiv preprint arXiv:2403.02148},
year={2024}
}
```