Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/tychota/oklab-cpp


https://github.com/tychota/oklab-cpp

Last synced: 22 days ago
JSON representation

Awesome Lists containing this project

README

        

# Oklab Color Interpolation Library

This project provides a library for color interpolation using the Oklab color space. It includes unit tests and benchmarks to ensure correctness and performance. Future optimizations may leverage NEON-specific instructions for improved performance on ARM architectures.

**Note:** the code is not proof. Don't use in production.
I adapted it from a working (yet unproven) javascript file we wrote earlier on.
I used GPT4 and GPT4o extensively to ease the conversion (and test conversational programming).
I repeat, don't use it in production.

## Features

- Interpolation between colors in the Oklab color space
- Gamut mapping to ensure colors stay within valid RGB ranges
- Unit tests for verifying functionality
- Benchmarks for performance profiling

## Getting Started

### Libraries used

You do not need to install them in advanced.

- [Conan](https://conan.io/) - C/C++ package manager
- [CMake](https://cmake.org/) - Build system
- [Google Test](https://github.com/google/googletest) - Unit testing framework
- [Google Benchmark](https://github.com/google/benchmark) - Benchmarking library
- [Poetry](https://python-poetry.org/) - Python dependency management and packaging

### Building the Project

1. **Install Conan:**

Follow the instructions on the [Conan website](https://conan.io/downloads) to install Conan, then run

```bash
conan profile detect
```

2. **Install Poetry:**
Follow the instructions on the [Poetry website](https://python-poetry.org/docs/#installation) to install Poetry.

3. **Install Cmake:**

```bash
brew install cmake
```

4. Clone the repository:

```bash
git clone
cd
```

5. **Install Python Dependencies:**

```bash
poetry install
```

6. Install dependencies using Conan:

```bash
conan install . --build=missing
```

7. Configure and build the project using Conan:

```bash
conan build . -s build_type=Release -b all
```

### Running Tests and Benchmarks

- To run the unit tests:

```bash
./build/Release/tests/oklab_tests
```

- To run the benchmarks:
```bash
./build/Release/benchmarks/oklab_benchmark
```

## Example Usage

Here's a simple example of how to use the Oklab interpolation library:

```cpp
#include "Oklab.h"
#include

int main() {
RGB color1 = { 255, 0, 0 }; // Red
RGB color2 = { 0, 0, 255 }; // Blue

float t = 0.5;
RGB result = interpolateColor(color1, color2, t);

std::cout << "Interpolated Color: ("
<< result[0] << ", "
<< result[1] << ", "
<< result[2] << ")" << std::endl;

return 0;
}
```

# Future Optimizations with NEON

To enhance the performance of matrix operations, we may introduce NEON-specific optimizations.

Below is an example of how such an optimization might look for matrix-vector multiplication:

```cpp
#include
#include "MatrixOperations.h"

Vector3 neon_multiply(const Matrix3x3& matrix, const Vector3& vec) {
// Convert the matrix and vector to float
float32x4_t row0 = {static_cast(matrix[0][0]), static_cast(matrix[0][1]), static_cast(matrix[0][2]), 0};
float32x4_t row1 = {static_cast(matrix[1][0]), static_cast(matrix[1][1]), static_cast(matrix[1][2]), 0};
float32x4_t row2 = {static_cast(matrix[2][0]), static_cast(matrix[2][1]), static_cast(matrix[2][2]), 0};

float32x4_t v = {static_cast(vec[0]), static_cast(vec[1]), static_cast(vec[2]), 0};

float32x4_t result0 = vmulq_f32(row0, v);
float32x4_t result1 = vmulq_f32(row1, v);
float32x4_t result2 = vmulq_f32(row2, v);

Vector3 result;
result[0] = vaddvq_f32(result0); // Sum of all elements
result[1] = vaddvq_f32(result1);
result[2] = vaddvq_f32(result2);

return result;

}
```

However, for small matrix operation like this, it doesn't seems to be worth.

- micro benchmark without neon.

```
2024-06-03T17:19:02+02:00
Running ./build/Release/oklabBenchmark
Run on (12 X 24 MHz CPU s)
CPU Caches:
L1 Data 64 KiB
L1 Instruction 128 KiB
L2 Unified 4096 KiB (x12)
Load Average: 5.50, 5.43, 4.95
---------------------------------------------------------------------
Benchmark Time CPU Iterations
---------------------------------------------------------------------
BM_InterpolateColor 162 ns 161 ns 4377325
BM_InterpolateRandomColors 289 ns 288 ns 2434131
```

- micro benchmark with NEON

```
2024-06-03T17:33:53+02:00
Running ./build/Release/oklabBenchmark
Run on (12 X 24 MHz CPU s)
CPU Caches:
L1 Data 64 KiB
L1 Instruction 128 KiB
L2 Unified 4096 KiB (x12)
Load Average: 6.17, 5.63, 5.22
---------------------------------------------------------------------
Benchmark Time CPU Iterations
---------------------------------------------------------------------
BM_InterpolateColor 173 ns 173 ns 4046149
BM_InterpolateRandomColors 303 ns 302 ns 2313293
```

# License

This project is licensed under the MIT License - see the LICENSE file for details.