Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/tylertemp/roopiy
https://github.com/tylertemp/roopiy
Last synced: 15 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/tylertemp/roopiy
- Owner: TylerTemp
- Created: 2023-10-02T15:53:09.000Z (over 1 year ago)
- Default Branch: master
- Last Pushed: 2024-05-11T13:49:07.000Z (8 months ago)
- Last Synced: 2024-11-08T06:47:54.457Z (2 months ago)
- Language: Python
- Size: 77.1 KB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Roopiy #
A video face swap tool using insightface
## Acceleration ##
1. Install [CUDA Toolkit 11.8](https://developer.nvidia.com/cuda-11-8-0-download-archive)
2. Download [cuDNN for Cuda 11.x](https://developer.nvidia.com/rdp/cudnn-archive)
3. For windows go `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v{YourVersion}`, copy the `bin`, `include`, `lib` folders from cuDNN to the CUDA folder, and add `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v{YourVersion}\bin` to path## Installation ##
1. clone this project
2. `pip install -e .`.
3. change the `torch` and `torchvision` in `requirements.txt` as you need, then `pip install -r requirements.txt`
4. Setup a model path, e.g. `temp` (note: use absolute path!)
5. download `inswapper_128.onnx` into your model path, from [huggingface](https://huggingface.co/ezioruan/inswapper_128.onnx) or [here](https://static.notexists.top/mirror/insightface/inswapper_128.onnx)
6. download [buffalo_l.zip](https://github.com/deepinsight/insightface/releases/download/v0.7/buffalo_l.zip) and unzip under `temp/models/buffalo_l`; you folder now looks like: `temp/models/buffalo_l/*.onnx`
7. download [GFPGANv1.4.pth](https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth) into your model path
8. download [detection_Resnet50_Final.pth](https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth) into your model path `gfpgan/weights`
9. download [parsing_parsenet.pth](https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth) into your model path `gfpgan/weights`## Model Path ##
either use `ROOPIY_MODEL_PATH={PathToYourModel} roopiy` or `roopiy --model-path={PathToYourModel}` to set the model path
## Basic Run ##
use `roopiy` to run. If it does not work, run `python -m roopiy`
check `roopiy --help` for construction