Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/uclanlp/awesome-fairness-papers
Papers on fairness in NLP
https://github.com/uclanlp/awesome-fairness-papers
List: awesome-fairness-papers
Last synced: 2 months ago
JSON representation
Papers on fairness in NLP
- Host: GitHub
- URL: https://github.com/uclanlp/awesome-fairness-papers
- Owner: uclanlp
- Created: 2020-01-13T19:52:44.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2024-05-02T17:39:12.000Z (8 months ago)
- Last Synced: 2024-05-21T02:24:07.565Z (8 months ago)
- Homepage:
- Size: 607 KB
- Stars: 413
- Watchers: 31
- Forks: 50
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-trustworthy-deep-learning - Awesome Fairness Papers - fairness-papers) ![ ](https://img.shields.io/github/last-commit/uclanlp/awesome-fairness-papers) (Fairness Lists)
- awesome-lists-machine-learning - Fairness papersl
- awesome-machine-learning-resources - **[List - fairness-papers?style=social) (Table of Contents)
README
# awesome-fairness-papers
Papers about fairness in NLP and Multi-Modal Models[Christina Chance](https://www.linkedin.com/in/christina-chance-147666166), [Yixin Wan](https://www.linkedin.com/in/elaine-yixin-wan-8032b8136/), [Jieyu Zhao](https://jyzhao.net/), [Emily Sheng](https://ewsheng.github.io/), [Sunipa Dev](https://sunipa.github.io/), [Yu (Hope) Hou](https://github.com/houyu0930), [Nanyun (Violet) Peng](https://vnpeng.net/),
and [Kai-Wei Chang](http://web.cs.ucla.edu/~kwchang/)## Background
Fairness, accountability, transparency, and ethics are becoming more and more important in Natural Language Processing (NLP) and Multi-Modal Settings. We provide a list of papers that serve as references for researchers interested in these topics. This repo mainly focuses on papers published in the NLP venues, but we also point to some other resources at the end.For relevant courses and other resources, please refer to [ACL Wiki](https://aclweb.org/aclwiki/Ethics_in_NLP)
**Disclaimer: We may miss some relevant papers in the list. If you have any suggestions or would like to add some papers, please submit a pull request or email us. Your contribution is much appreciated!**
## Contents
- [awesome-fairness-papers](#awesome-fairness-papers)
- [Background](#background)
- [Contents](#contents)
- [Paper List](#paper-list)
- [Surveys](#surveys)
- [Social Impact of Biases](#social-impact-of-biases)
- [Data, Models, & Metrics](#data-models--metrics)
- [Word/Sentence Representations](#wordsentence-representations)
- [Natural Language Understanding](#natural-language-understanding)
- [Bias Amplification Issue](#bias-amplification-issue)
- [Bias Detection](#bias-detection)
- [Bias Mitigation](#bias-mitigation)
- [Natural Language Generation](#natural-language-generation)
- [Machine Translation](#machine-translation)
- [Dialogue Generation](#dialogue-generation)
- [Other Generation](#other-generation)
- [Multi-Modal Setting](#multi-modal-setting)
- [Bias Detection in Multi-Modal Setting](#bias-detection-in-multi-modal-setting)
- [Bias Mitigation in Multi-Modal Setting](#bias-mitigation-in-multi-modal-setting)
- [Bias Visualization](#bias-visualization)
- [Others](#others)
- [Tutorial List](#tutorial-list)
- [Jupyter/Colab Tutorial](#jupytercolab-tutorial)
- [Conference/Workshop List](#conferenceworkshop-list)### Paper List
#### Surveys
1. [Language (Technology) is Power: A Critical Survey of "Bias" in NLP](https://www.aclweb.org/anthology/2020.acl-main.485), Blodgett, Su Lin and Barocas, Solon and Daumé III, Hal and Wallach, Hanna, 2020
1. [Predictive Biases in Natural Language Processing Models: A Conceptual Framework and Overview](https://www.aclweb.org/anthology/2020.acl-main.468), Shah, Deven Santosh and Schwartz, H. Andrew and Hovy, Dirk, 2020
1. [Mitigating Gender Bias in Natural Language Processing: Literature Review](https://www.aclweb.org/anthology/P19-1159), Sun, Tony and Gaut, Andrew and Tang, Shirlyn and Huang, Yuxin and ElSherief, Mai and Zhao, Jieyu and Mirza, Diba and Belding, Elizabeth and Chang, Kai-Wei and Wang, William Yang, 2019
1. [A survey on bias and fairness in machine learning](https://arxiv.org/abs/1908.09635), Mehrabi, Ninareh and Morstatter, Fred and Saxena, Nripsuta and Lerman, Kristina and Galstyan, Aram, 2019
1. [50 years of test (Un)fairness: Lessons for machine learning](https://dl.acm.org/doi/abs/10.1145/3287560.3287600), Hutchinson, Ben and Mitchell, Margaret, 2019
1. [Societal Biases in Language Generation: Progress and Challenges](https://arxiv.org/abs/2105.04054), Sheng, Emily and Chang, Kai-Wei and Natarajan, Prem and Peng, Nanyun, 2021
1. [Gender Bias in Machine Translation](https://arxiv.org/abs/2104.06001), Savoldi, Beatrice and Gaido, Marco and Bentivogli, Luisa and Negri, Matteo and Turchi, Marco, 2021
1. [Quantifying Social Biases in NLP: A Generalization and Empirical Comparison of Extrinsic Fairness Metrics](https://arxiv.org/abs/2106.14574), Czarnowska, Paula and Vyas, Yogarshi and Shah Kashif, 2021
1. [Confronting Abusive Language Online: A Survey from the Ethical and Human Rights Perspective](https://arxiv.org/abs/2012.12305), Kiritchenko, Svetlana and Nejadgholi, Isar and Fraser, Kathleen C, 2020
1. [On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? 🦜](https://dl.acm.org/doi/10.1145/3442188.3445922), Bender, Emily M., Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. 2021.
2. [An Empirical Survey of the Effectiveness of Debiasing Techniques for Pre-trained Language Models ](https://arxiv.org/abs/2110.08527). Nicholas Meade, Elinor Poole-Dayan, Siva Reddy. ACL 2022
12. [Square One Bias in NLP: Towards a Multi-Dimensional Exploration of the Research Manifold](https://aclanthology.org/2022.findings-acl.184/). Sebastian Ruder, Ivan Vulić, Anders Søgaard. ACL 2022 Findings.
13. [Measuring Fairness with Biased Rulers: A Comparative Study on Bias Metrics for Pre-trained](https://aclanthology.org/2022.naacl-main.122.pdf). Language Models Pieter Delobelle, Ewoenam Kwaku Tokpo, Toon Calders, Bettina Berendt. NAACL 2022
14. [Benchmarking Intersectional Biases in NLP](https://aclanthology.org/2022.naacl-main.263.pdf). John Lalor, Yi Yang, Kendall Smith, Nicole Forsgren, Ahmed Abbasi. NAACL 2022.
15. [Measure and Improve Robustness in NLP Models: A Survey](https://aclanthology.org/2022.naacl-main.339.pdf). Xuezhi Wang, Haohan Wang, Diyi Yang. NAACL 2022.#### Social Impact of Biases
1. [The Social Impact of Natural Language Processing](https://www.aclweb.org/anthology/P16-2096), Hovy, Dirk and Spruit, Shannon L., 2016
1. [Give Me Convenience and Give Her Death: Who Should Decide What Uses of NLP are Appropriate, and on What Basis?](https://www.aclweb.org/anthology/2020.acl-main.261), Leins, Kobi and Lau, Jey Han and Baldwin, Timothy, 2020
1. [Situated Data, Situated Systems: A Methodology to Engage with Power Relations in Natural Language Processing Research](https://www.aclweb.org/anthology/2020.gebnlp-1.10), Havens, Lucy and Terras, Melissa and Bach, Benjamin and Alex, Beatrice, 2020
1. [Re-imagining Algorithmic Fairness in India and Beyond](https://arxiv.org/abs/2101.09995), Sambasivan, Nithya and Arnesen, Erin and Hutchinson, Ben and Doshi, Tulsee and Prabhakaran, Vinodkumar, 2021
1. [Improving fairness in machine learning systems: What do industry practitioners need?](https://dl.acm.org/doi/10.1145/3290605.3300830), Holstein, Kenneth and Wortman Vaughan, Jennifer and Daumé III, Hal and Dudik, Miro and Wallach, Hanna, 2019
1. The problem with bias: Allocative versus representational harms in machine learning, Barocas, Solon and Crawford, Kate and Shapiro, Aaron and Wallach, Hanna, 2017
2. [The many dimensions of algorithmic fairness in educational applications](https://www.aclweb.org/anthology/W19-4401), Loukina, Anastassia and Madnani, Nitin and Zechner, Klaus, 2019
3. [NLPositionality: Characterizing Design Biases of Datasets and Models](https://aclanthology.org/2023.acl-long.505/). Sebastin Santy, Jenny Liang, Ronan Le Bras, Katharina Reinecke, Maarten Sap. ACL 2023
4. [What social attitudes about gender does BERT encode? Leveraging insights from psycholinguistics](https://aclanthology.org/2023.acl-long.375/). Julia Watson, Barend Beekhuizen, Suzanne Stevenson. ACL 2023
5. [Examining risks of racial biases in NLP tools for child protective services](https://dl.acm.org/doi/10.1145/3593013.3594094). Anjalie Field, Amanda Coston, Nupoor Gandhi, Alexandra Chouldechova, Emily Putnam-Hornstein, David Steier, Yulia Tsvetkov. ACM FAccT 2023
6. ["I wouldn’t say offensive but...": Disability-Centered Perspectives on Large Language Models](https://dl.acm.org/doi/10.1145/3593013.3593989). Vinitha Gadiraju, Shaun Kane, Sunipa Dev, Alex Taylor, Ding Wang, Emily Denton, Robin Brewer. ACM FAccT 2023
7. [Contrastive Language-Vision AI Models Pretrained on Web-Scraped Multimodal Data Exhibit Sexual Objectification Bias](https://dl.acm.org/doi/10.1145/3593013.3594072). Robert Wolfe, Yiwei Yang, Bill Howe, Aylin Caliskan. ACM FAccT 2023#### Data, Models, & Metrics
1. [Data Statements for Natural Language Processing: Toward Mitigating System Bias and Enabling Better Science](https://www.aclweb.org/anthology/Q18-1041), Bender, Emily M. and Friedman, Batya, 2018
1. [Data and its (dis)contents: A survey of dataset development and use in machine learning research](https://arxiv.org/abs/2012.05345), Paullada, Amandalynne and Raji, Inioluwa Deborah and Bender, Emily M and Denton, Emily and Hanna, Alex, 2020
1. [Datasheets for datasets](https://arxiv.org/abs/1803.09010), Gebru, Timnit and Morgenstern, Jamie and Vecchione, Briana and Vaughan, Jennifer Wortman and Wallach, Hanna and Daumé III, Hal and Crawford, Kate, 2018
1. [Discovering and categorising language biases in reddit](https://arxiv.org/abs/2008.02754), Ferrer, Xavier and van Nuenen, Tom and Such, Jose M. and Criado, Natalia, 2021
1. [Model cards for model reporting](https://dl.acm.org/doi/10.1145/3287560.3287596), Mitchell, Margaret and Wu, Simone and Zaldivar, Andrew and Barnes, Parker and Vasserman, Lucy and Hutchinson, Ben and Spitzer, Elena and Raji, Inioluwa Deborah and Gebru, Timnit, 2019
1. [Counterfactual fairness](https://papers.nips.cc/paper/2017/hash/a486cd07e4ac3d270571622f4f316ec5-Abstract.html), Kusner, Matt J and Loftus, Joshua and Russell, Chris and Silva, Ricardo, 2017
1. [Fairness through awareness](https://dl.acm.org/doi/10.1145/2090236.2090255), Dwork, Cynthia and Hardt, Moritz and Pitassi, Toniann and Reingold, Omer and Zemel, Richard, 2012
1. [Equality of opportunity in supervised learning](https://dl.acm.org/doi/10.5555/3157382.3157469), Hardt, Moritz and Price, Eric and Srebro, Nati, 2016
1. [The price of debiasing automatic metrics in natural language evalaution](https://www.aclweb.org/anthology/P18-1060), Chaganty, Arun and Mussmann, Stephen and Liang, Percy, 2018
1. [Are We Modeling the Task or the Annotator? An Investigation of Annotator Bias in Natural Language Understanding Datasets](https://www.aclweb.org/anthology/D19-1107), Geva, Mor and Goldberg, Yoav and Berant, Jonathan, 2019
1. [Proposed Taxonomy for Gender Bias in Text; A Filtering Methodology for the Gender Generalization Subtype](https://www.aclweb.org/anthology/W19-3802), Hitti, Yasmeen and Jang, Eunbee and Moreno, Ines and Pelletier, Carolyne, 2019
1. [These are not the Stereotypes You are Looking For: Bias and Fairness in Authorial Gender Attribution](https://www.aclweb.org/anthology/W17-1602), Koolen, Corina and van Cranenburgh, Andreas, 2017
2. [Discovering Biased News Articles Leveraging Multiple Human Annotations](https://www.aclweb.org/anthology/2020.lrec-1.159), Lazaridou, Konstantina and L{\"o}ser, Alexander and Mestre, Maria and Naumann, Felix, 2020
1. [Annotating and Analyzing Biased Sentences in News Articles using Crowdsourcing](https://www.aclweb.org/anthology/2020.lrec-1.184), Lim, Sora and Jatowt, Adam and F{\"a}rber, Michael and Yoshikawa, Masatoshi, 2020
1. [Differentially Private Representation for NLP: Formal Guarantee and An Empirical Study on Privacy and Fairness](https://www.aclweb.org/anthology/2020.findings-emnlp.213), Lyu, Lingjuan and He, Xuanli and Li, Yitong, 2020
1. [Building Better Open-Source Tools to Support Fairness in Automated Scoring](https://www.aclweb.org/anthology/W17-1605), Madnani, Nitin and Loukina, Anastassia and von Davier, Alina and Burstein, Jill and Cahill, Aoife, 2017
1. [StereoSet: Measuring stereotypical bias in pretrained language models](https://arxiv.org/abs/2004.09456), Nadeem, Moin and Bethke, Anna and Reddy, Siva, 2020
2. [Investigating Sports Commentator Bias within a Large Corpus of American Football Broadcasts](https://www.aclweb.org/anthology/D19-1666), Merullo, Jack and Yeh, Luke and Handler, Abram and Grissom II, Alvin and O{'}Connor, Brendan and Iyyer, Mohit, 2019
3. [Artie Bias Corpus: An Open Dataset for Detecting Demographic Bias in Speech Applications](https://www.aclweb.org/anthology/2020.lrec-1.796), Meyer, Josh and Rauchenstein, Lindy and Eisenberg, Joshua D. and Howell, Nicholas, 2020
4. [RtGender: A Corpus for Studying Differential Responses to Gender](https://nlp.stanford.edu/robvoigt/rtgender/rtgender.pdf), Voigt, Rob and Jurgens, David and Prabhakaran, Vinodkumar and Jurafsky, Dan and Tsvetkov, Yulia, 2018
5. [Multi-Dimensional Gender Bias Classification](https://www.aclweb.org/anthology/2020.emnlp-main.23), Dinan, Emily and Fan, Angela and Wu, Ledell and Weston, Jason and Kiela, Douwe and Williams, Adina, 2020
6. [UNQOVERing Stereotyping Biases via Underspecified Questions](https://www.aclweb.org/anthology/2020.findings-emnlp.311), Li, Tao and Khashabi, Daniel and Khot, Tushar and Sabharwal, Ashish and Srikumar, Vivek, 2020
1. [CrowS-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Language Models](https://www.aclweb.org/anthology/2020.emnlp-main.154), Nangia, Nikita and Vania, Clara and Bhalerao, Rasika and Bowman, Samuel R., 2020
1. [Gender Bias in Coreference Resolution](https://www.aclweb.org/anthology/N18-2002), Rudinger, Rachel and Naradowsky, Jason and Leonard, Brian and Van Durme, Benjamin, 2018
1. [Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods](https://www.aclweb.org/anthology/N18-2003), Zhao, Jieyu and Wang, Tianlu and Yatskar, Mark and Ordonez, Vicente and Chang, Kai-Wei, 2018
1. [Unmasking the Mask -- Evaluating Social Biases in Masked Language Models](https://arxiv.org/abs/2104.07496), Kaneko, Masahiro and Bollegala, Danushka, 2021
1. [WIKIBIAS: Detecting Multi-Span Subjective Biases in Language](https://www.cc.gatech.edu/~dyang888/docs/emnlp21_wikibias.pdf), Zhong, Yang and Yang, Jingfeng and Xu, Wei and Yang, Diyi, EMNLP, 2021
2. [Constructing a Psychometric Testbed for Fair Natural Language Processing](https://aclanthology.org/2021.emnlp-main.304), Ahmed Abbasi, David Dobolyi, John P. Lalor, Richard G. Netemeyer, Kendall Smith, and Yi Yang, EMNLP 2021
3. [Benchmarking Bias Mitigation Algorithms in Representation Learning through Fairness Metrics](https://openreview.net/forum?id=OTnqQUEwPKu), Charan Reddy, Deepak Sharma, Soroush Mehri, Adriana Romero, Samira Shabanian, Sina Honari. NeurIPS, 2021.
29. [FairLex: A Multilingual Benchmark for Evaluating
Fairness in Legal Text Processing](https://arxiv.org/pdf/2203.07228.pdf). Ilias Chalkidis, Tommaso Pasini, Sheng Zhang, Letizia Tomada, Sebastian Felix Schwemer, Anders Søgaard. ACL 2022.
30. [French CrowS-Pairs: Extending a challenge dataset for measuring social bias in masked language models to a language other than English](https://aclanthology.org/2022.acl-long.583/). Aurélie Névéol, Yoann Dupont, Julien Bezançon, Karën Fort. ACL 2022
31. [Measuring Fairness of Text Classifiers via Prediction Sensitivity](https://arxiv.org/abs/2203.08670). Satyapriya Krishna, Rahul Gupta, Apurv Verma, Jwala Dhamala, Yada Pruksachatkun, Kai-Wei Chang. ACL 2022.
32. [Optimising Equal Opportunity Fairness in Model Training](https://aclanthology.org/2022.naacl-main.299.pdf). Aili Shen, Xudong Han, Trevor Cohn, Timothy Baldwin, Lea Frermann. NAACL 2022.
33. [Benchmarking Intersectional Biases in NLP](https://aclanthology.org/2022.naacl-main.263/), John P. Lalor, Yi Yang, Kendall Smith, Nicole Forsgren, Ahmed Abbasi. NAACL 2022.
35. [Collecting a Large-Scale Gender Bias Dataset for Coreference Resolution and Machine Translation](https://aclanthology.org/2021.findings-emnlp.211/). Shahar Levy, Koren Lazar, Gabriel Stanovsky. EMNLP 2021
36. [Recognition of They/Them as Singular Personal Pronouns in Coreference Resolution](https://aclanthology.org/2022.naacl-main.250.pdf). Connor Baumler and Rachel Rudinger. NAACL 2022.
37. [Theory-Grounded Measurement of U.S. Social Stereotypes in English Language Models](https://aclanthology.org/2022.naacl-main.92.pdf). Yang Trista Cao, Anna Sotnikova, Hal Daumé III, Rachel Rudinger, Linda Zou. NAACL 2022.
38. [WinoQueer: A Community-in-the-Loop Benchmark for Anti-LGBTQ+ Bias in Large Language Models](https://aclanthology.org/2023.acl-long.507/). Virginia Felkner, Ho-Chun Herbert Chang, Eugene Jang, Jonathan May. ACL 2023
39. [The Tail Wagging the Dog: Dataset Construction Biases of Social Bias Benchmarks](https://aclanthology.org/2023.acl-short.118/). Nikil Selvam, Sunipa Dev, Daniel Khashabi, Tushar Khot, Kai-Wei Chang. ACL 2023
40. [Fighting Bias With Bias: Promoting Model Robustness by Amplifying Dataset Biases](https://aclanthology.org/2023.findings-acl.833/). Yuval Reif, Roy Schwartz. ACL 2023 Findings
41. [FORK: A Bite-Sized Test Set for Probing Culinary Cultural Biases in Commonsense Reasoning Models](https://aclanthology.org/2023.findings-acl.631/). Shramay Palta, Rachel Rudinger. ACL 2023 Findings
42. [KoSBI: A Dataset for Mitigating Social Bias Risks Towards Safer Large Language Model Applications](https://aclanthology.org/2023.acl-industry.21/). Hwaran Lee, Seokhee Hong, Joonsuk Park, Takyoung Kim, Gunhee Kim, Jung-woo Ha. ACL 2023
43. [Riveter: Measuring Power and Social Dynamics Between Entities](https://aclanthology.org/2023.acl-demo.36/). Maria Antoniak, Anjalie Field, Jimin Mun, Melanie Walsh, Lauren Klein, Maarten Sap. ACL 2023
44. [BERTScore is Unfair: On Social Bias in Language Model-Based Metrics for Text Generation](https://aclanthology.org/2022.emnlp-main.245/). Tianxiang Sun, Junliang He, Xipeng Qiu, Xuanjing Huang. EMNLP 2022
45. [FairLib: A Unified Framework for Assessing and Improving Fairness](https://aclanthology.org/2022.emnlp-demos.7/). Xudong Han, Aili Shen, Yitong Li, Lea Frermann, Timothy Baldwin, Trevor Cohn. EMNLP 2022
46. [Towards Identifying Social Bias in Dialog Systems: Framework, Dataset, and Benchmark](https://aclanthology.org/2022.findings-emnlp.262/). Jingyan Zhou, Jiawen Deng, Fei Mi, Yitong Li, Yasheng Wang, Minlie Huang, Xin Jiang, Qun Liu, Helen Meng. EMNLP 2022
47. [Detecting Unintended Social Bias in Toxic Language Datasets](https://aclanthology.org/2022.conll-1.10/). Nihar Sahoo, Himanshu Gupta, Pushpak Bhattacharyya. EMNLP 2022
48. [Toward Gender-Inclusive Coreference Resolution](https://aclanthology.org/2020.acl-main.418/). Yang Trista Cao, Hal Daumé III. ACL 2020.#### Word/Sentence Representations
1. [Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings](https://arxiv.org/abs/1607.06520), Bolukbasi, Tolga and Chang, Kai-Wei and Zou, James and Saligrama, Venkatesh and Kalai, Adam, 2016 [[github]](https://github.com/tolga-b/debiaswe)
1. [Semantics derived automatically from language corpora contain human-like biases](https://science.sciencemag.org/content/356/6334/183), Caliskan, Aylin and Bryson, Joanna J. and Narayanan, Arvind, 2017
1. [Attenuating Biases in Word Vectors](http://proceedings.mlr.press/v89/dev19a.html), Dev, Sunipa and Phillips, Jeff M, 2019
1. [Gender Bias in Contextualized Word Embeddings](https://www.aclweb.org/anthology/N19-1064), Zhao, Jieyu and Wang, Tianlu and Yatskar, Mark and Cotterell, Ryan and Ordonez, Vicente and Chang, Kai-Wei, 2019
1. [Black is to Criminal as Caucasian is to Police: Detecting and Removing Multiclass Bias in Word Embeddings](https://www.aclweb.org/anthology/N19-1062), Manzini, Thomas and Yao Chong, Lim and Black, Alan W and Tsvetkov, Yulia, 2019
1. [Towards Understanding Linear Word Analogies](https://www.aclweb.org/anthology/P19-1315), Ethayarajh, Kawin and Duvenaud, David and Hirst, Graeme, 2019
1. [Understanding Undesirable Word Embedding Associations](https://www.aclweb.org/anthology/P19-1166), Ethayarajh, Kawin and Duvenaud, David and Hirst, Graeme, 2019
2. [Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer](https://www.aclweb.org/anthology/2020.acl-main.260), Zhao, Jieyu and Mukherjee, Subhabrata and Hosseini, Saghar and Chang, Kai-Wei and Hassan Awadallah, Ahmed, 2020
1. [Nurse is Closer to Woman than Surgeon? Mitigating Gender-Biased Proximities in Word Embeddings](https://www.aclweb.org/anthology/2020.tacl-1.32), Kumar, Vaibhav and Bhotia, Tenzin Singhay and Kumar, Vaibhav and Chakraborty, Tanmoy, 2020
1. [Measuring Bias in Contextualized Word Representations](https://www.aclweb.org/anthology/W19-3823), Kurita, Keita and Vyas, Nidhi and Pareek, Ayush and Black, Alan W and Tsvetkov, Yulia, 2019
1. [Unmasking Contextual Stereotypes: Measuring and Mitigating BERT's Gender Bias](https://www.aclweb.org/anthology/2020.gebnlp-1.1), Bartl, Marion and Nissim, Malvina and Gatt, Albert, 2020
1. [Evaluating the Underlying Gender Bias in Contextualized Word Embeddings](https://www.aclweb.org/anthology/W19-3805), Basta, Christine and Costa-jussà, Marta R. and Casas, Noe, 2019
1. [Evaluating Bias In Dutch Word Embeddings](https://www.aclweb.org/anthology/2020.gebnlp-1.6), Chávez Mulsa, Rodrigo Alejandro and Spanakis, Gerasimos, 2020
1. [Learning Gender-Neutral Word Embeddings](https://arxiv.org/abs/1809.01496), Zhao, Jieyu and Zhou, Yichao and Li, Zeyu and Wang, Wei and Chang, Kai-Wei
1. [Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them](https://www.aclweb.org/anthology/N19-1061), Gonen, Hila and Goldberg, Yoav, 2019
1. [It{'}s All in the Name: Mitigating Gender Bias with Name-Based Counterfactual Data Substitution](https://www.aclweb.org/anthology/D19-1530), Hall Maudslay, Rowan and Gonen, Hila and Cotterell, Ryan and Teufel, Simone, 2019
1. [Gender-preserving Debiasing for Pre-trained Word Embeddings](https://www.aclweb.org/anthology/P19-1160), Kaneko, Masahiro and Bollegala, Danushka, 2019
1. [Debiasing Pre-trained Contextualised Embeddings](https://www.aclweb.org/anthology/2021.eacl-main.107), Kaneko, Masahiro and Bollegala, Danushka, 2021
1. [Dictionary-based Debiasing of Pre-trained Word Embeddings](https://www.aclweb.org/anthology/2021.eacl-main.16), Kaneko, Masahiro and Bollegala, Danushka, 2021
1. [Conceptor Debiasing of Word Representations Evaluated on WEAT](https://www.aclweb.org/anthology/W19-3806), Karve, Saket and Ungar, Lyle and Sedoc, Jo{\~a}o, 2019
2. [Are We Consistently Biased? Multidimensional Analysis of Biases in Distributional Word Vectors](https://www.aclweb.org/anthology/S19-1010), Lauscher, Anne and Glava{\v{s}}, Goran, 2019
1. [AraWEAT: Multidimensional Analysis of Biases in Arabic Word Embeddings](https://www.aclweb.org/anthology/2020.wanlp-1.17), Lauscher, Anne and Takieddin, Rafik and Ponzetto, Simone Paolo and Glava{\v{s}}, Goran, 2020
1. [Unequal Representations: Analyzing Intersectional Biases in Word Embeddings Using Representational Similarity Analysis](https://www.aclweb.org/anthology/2020.coling-main.151), Lepori, Michael, 2020
1. [Monolingual and Multilingual Reduction of Gender Bias in Contextualized Representations](https://www.aclweb.org/anthology/2020.coling-main.446), Liang, Sheng and Dufter, Philipp and Sch{\"u}tze, Hinrich, 2020
1. [Towards Debiasing Sentence Representations](https://www.aclweb.org/anthology/2020.acl-main.488), Liang, Paul Pu and Li, Irene Mengze and Zheng, Emily and Lim, Yao Chong and Salakhutdinov, Ruslan and Morency, Louis-Philippe, 2020
2. [On Measuring Social Biases in Sentence Encoders](https://www.aclweb.org/anthology/N19-1063), May, Chandler and Wang, Alex and Bordia, Shikha and Bowman, Samuel R. and Rudinger, Rachel, 2019
3. [Fair Is Better than Sensational: Man Is to Doctor as Woman Is to Doctor](https://www.aclweb.org/anthology/2020.cl-2.7), Nissim, Malvina and van Noord, Rik and van der Goot, Rob, 2020
4. [Gender Bias in Pretrained Swedish Embeddings](https://www.aclweb.org/anthology/W19-6104), Sahlgren, Magnus and Olsson, Fredrik, 2019
5. [Is Wikipedia succeeding in reducing gender bias? Assessing changes in gender bias in Wikipedia using word embeddings](https://www.aclweb.org/anthology/2020.nlpcss-1.11), Schmahl, Katja Geertruida and Viering, Tom Julian and Makrodimitris, Stavros and Naseri Jahfari, Arman and Tax, David and Loog, Marco, 2020
4. [The Role of Protected Class Word Lists in Bias Identification of Contextualized Word Representations](https://www.aclweb.org/anthology/W19-3808), Sedoc, Jo{\~a}o and Ungar, Lyle, 2019
5. [Neutralizing Gender Bias in Word Embeddings with Latent Disentanglement and Counterfactual Generation](https://www.aclweb.org/anthology/2020.findings-emnlp.280), Shin, Seungjae and Song, Kyungwoo and Jang, JoonHo and Kim, Hyemi and Joo, Weonyoung and Moon, Il-Chul, 2020
6. [A Transparent Framework for Evaluating Unintended Demographic Bias in Word Embeddings](https://www.aclweb.org/anthology/P19-1162), Sweeney, Chris and Najafian, Maryam, 2019
7. [Can Existing Methods Debias Languages Other than English? First Attempt to Analyze and Mitigate Japanese Word Embeddings](https://www.aclweb.org/anthology/2020.gebnlp-1.5), Takeshita, Masashi and Katsumata, Yuki and Rzepka, Rafal and Araki, Kenji, 2020
8. [Exploring the Linear Subspace Hypothesis in Gender Bias Mitigation](https://www.aclweb.org/anthology/2020.emnlp-main.232), Vargas, Francisco and Cotterell, Ryan, 2020
9. [Double-Hard Debias: Tailoring Word Embeddings for Gender Bias Mitigation](https://www.aclweb.org/anthology/2020.acl-main.484), Wang, Tianlu and Lin, Xi Victoria and Rajani, Nazneen Fatema and McCann, Bryan and Ordonez, Vicente and Xiong, Caiming, 2020
10. [Robustness and Reliability of Gender Bias Assessment in Word Embeddings: The Role of Base Pairs](https://www.aclweb.org/anthology/2020.aacl-main.76), Zhang, Haiyang and Sneyd, Alison and Stevenson, Mark, 2020
11. [Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change](https://cs.stanford.edu/people/jure/pubs/diachronic-acl16.pdf), Hamilton, William L. and Leskovec, Jure and Jurafsky, Dan, 2016 [[github]](https://nlp.stanford.edu/projects/histwords/)
12. [Measuring Gender Bias in Word Embeddings across Domains and Discovering New Gender Bias Word Categories](https://www.aclweb.org/anthology/W19-3804), Chaloner, Kaytlin and Maldonado, Alfredo, 2019
13. [Relating Word Embedding Gender Biases to Gender Gaps: A Cross-Cultural Analysis](https://www.aclweb.org/anthology/W19-3803), Friedman, Scott and Schmer-Galunder, Sonja and Chen, Anthony and Rye, Jeffrey, 2019
3. [Modeling Personal Biases in Language Use by Inducing Personalized Word Embeddings](https://www.aclweb.org/anthology/N19-1215), Oba, Daisuke and Yoshinaga, Naoki and Sato, Shoetsu and Akasaki, Satoshi and Toyoda, Masashi, 2019
4. [Quantifying 60 Years of Gender Bias in Biomedical Research with Word Embeddings](https://www.aclweb.org/anthology/2020.bionlp-1.1), Rios, Anthony and Joshi, Reenam and Shin, Hejin, 2020
1. [Debiasing knowledge graph embeddings](https://www.aclweb.org/anthology/2020.emnlp-main.595), Fisher, Joseph and Mittal, Arpit and Palfrey, Dave and Christodoulopoulos, Christos, 2020
1. [Assessing the Reliability of Word Embedding Gender Bias Measures](https://arxiv.org/abs/2109.04732), Du, Yupei and Fang, Qixiang and Nguyen, Dong, EMNLP, 2021
1. [Harms of Gender Exclusivity and Challenges in Non-Binary Representation in Language Technologies](https://arxiv.org/abs/2108.12084), Dev, Sunipa and Monajatipoor, Masoud and Ovalle, Anaelia and Subramonian, Arjun and Phillips, Jeff M and Chang, Kai-Wei, EMNLP, 2021
45. [Sense Embeddings are also Biased -- Evaluating Social Biases in Static and Contextualised Sense Embeddings](https://aclanthology.org/2022.acl-long.135/). Yi Zhou, Masahiro Kaneko, Danushka Bollegala. ACL 2022
46. [Understanding Gender Bias in Knowledge Base Embeddings](https://aclanthology.org/2022.acl-long.98/). Yupei Du, Qi Zheng, Yuanbin Wu, Man Lan, Yan Yang, Meirong Ma. ACL 2022
47. [On the Intrinsic and Extrinsic Fairness Evaluation Metrics for Contextualized Language Representations ](https://arxiv.org/abs/2203.13928). Yang Trista Cao, Yada Pruksachatkun, Kai-Wei Chang, Rahul Gupta, Varun Kumar, Jwala Dhamala, Aram Galstyan. ACL 2022
48. [Learning Bias-reduced Word Embeddings Using Dictionary Definitions](https://aclanthology.org/2022.findings-acl.90/). Haozhe An, Xiaojiang Liu, Donald Zhang. ACL 2022 Findings.
49. [Socially Aware Bias Measurements for Hindi Language Representations](https://arxiv.org/abs/2110.07871). Vijit Malik, Sunipa Dev, Akihiro Nishi, Nanyun Peng, Kai-Wei Chang. NAACL 2022
50. [No Word Embedding Model Is Perfect: Evaluating the Representation Accuracy for Social Bias in the Media](https://aclanthology.org/2022.findings-emnlp.152/). Maximilian Spliethöver, Maximilian Keiff, Henning Wachsmuth. EMNLP 2022
51. [Gender Bias in Meta-Embeddings](https://aclanthology.org/2022.findings-emnlp.227/). Masahiro Kaneko, Danushka Bollegala, Naoaki Okazaki. EMNLP 2022
52. [The Undesirable Dependence on Frequency of Gender Bias Metrics Based on Word Embeddings](https://aclanthology.org/2022.findings-emnlp.373/). Francisco Valentini, Germán Rosati, Diego Fernandez Slezak, Edgar Altszyler. EMNLP 2022#### Natural Language Understanding
##### Bias Amplification Issue
1. [Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints](https://www.aclweb.org/anthology/D17-1323), Zhao, Jieyu and Wang, Tianlu and Yatskar, Mark and Ordonez, Vicente and Chang, Kai-Wei, 2017
2. [Feature-Wise Bias Amplification](https://arxiv.org/abs/1812.08999), Klas Leino, Emily Black, Matt Fredrikson, Shayak Sen, Anupam Datta. ICLR, 2019.
1. [Mitigating Gender Bias Amplification in Distribution by Posterior Regularization](https://www.aclweb.org/anthology/2020.acl-main.264), Jia, Shengyu and Meng, Tao and Zhao, Jieyu and Chang, Kai-Wei, 2020
2. [Fairness Without Demographics in Repeated Loss Minimization](https://arxiv.org/abs/1806.08010), Tatsunori B. Hashimoto, Megha Srivastava, Hongseok Namkoong, Percy Liang, ICLM, 2018##### Bias Detection
1. [LOGAN: Local Group Bias Detection by Clustering](https://www.aclweb.org/anthology/2020.emnlp-main.155), Zhao, Jieyu and Chang, Kai-Wei, 2020
1. [Examining Gender Bias in Languages with Grammatical Gender](https://www.aclweb.org/anthology/D19-1531), Zhou, Pei and Shi, Weijia and Zhao, Jieyu and Huang, Kuan-Hao and Chen, Muhao and Cotterell, Ryan and Chang, Kai-Wei, 2019
1. [Racial Bias in Hate Speech and Abusive Language Detection Datasets](https://www.aclweb.org/anthology/W19-3504), Davidson, Thomas and Bhattacharya, Debasmita and Weber, Ingmar, 2019
1. [Social Biases in NLP Models as Barriers for Persons with Disabilities](https://www.aclweb.org/anthology/2020.acl-main.487), Hutchinson, Ben and Prabhakaran, Vinodkumar and Denton, Emily and Webster, Kellie and Zhong, Yu and Denuyl, Stephen, 2020
1. [Perturbation Sensitivity Analysis to Detect Unintended Model Biases](https://www.aclweb.org/anthology/D19-1578), Prabhakaran, Vinodkumar and Hutchinson, Ben and Mitchell, Margaret, 2019
1. [OSCaR: Orthogonal Subspace Correction and Rectification of Biases in Word Embeddings](https://arxiv.org/abs/2007.00049), Dev, Sunipa and Li, Tao and Phillips, Jeff M and Srikumar, Vivek, 2020
1. [Women's Syntactic Resilience and Men's Grammatical Luck: Gender-Bias in Part-of-Speech Tagging and Dependency Parsing](https://www.aclweb.org/anthology/P19-1339), Garimella, Aparna and Banea, Carmen and Hovy, Dirk and Mihalcea, Rada, 2019
1. [Towards Understanding Gender Bias in Relation Extraction](https://www.aclweb.org/anthology/2020.acl-main.265), Gaut, Andrew and Sun, Tony and Tang, Shirlyn and Huang, Yuxin and Qian, Jing and ElSherief, Mai and Zhao, Jieyu and Mirza, Diba and Belding, Elizabeth and Chang, Kai-Wei and Wang, William Yang, 2020
1. [Type B Reflexivization as an Unambiguous Testbed for Multilingual Multi-Task Gender Bias](https://www.aclweb.org/anthology/2020.emnlp-main.209), Gonz{\'a}lez, Ana Valeria and Barrett, Maria and Hvingelby, Rasmus and Webster, Kellie and S{\o}gaard, Anders, 2020
1. [Inflating Topic Relevance with Ideology: A Case Study of Political Ideology Bias in Social Topic Detection Models](https://www.aclweb.org/anthology/2020.coling-main.428), Guo, Meiqi and Hwa, Rebecca and Lin, Yu-Ru and Chung, Wen-Ting, 2020
1. [Media Bias, the Social Sciences, and NLP: Automating Frame Analyses to Identify Bias by Word Choice and Labeling](https://www.aclweb.org/anthology/2020.acl-srw.12), Hamborg, Felix, 2020
1. [An Annotation Scheme for Automated Bias Detection in Wikipedia](https://www.aclweb.org/anthology/W11-0406), Herzig, Livnat and Nunes, Alex and Snir, Batia, 2011
1. [Multilingual Twitter Corpus and Baselines for Evaluating Demographic Bias in Hate Speech Recognition](https://www.aclweb.org/anthology/2020.lrec-1.180), Huang, Xiaolei and Xing, Linzi and Dernoncourt, Franck and Paul, Michael J., 2020
1. [Enhancing Bias Detection in Political News Using Pragmatic Presupposition](https://www.aclweb.org/anthology/2020.socialnlp-1.1), Kameswari, Lalitha and Sravani, Dama and Mamidi, Radhika, 2020
1. [Examining Gender and Race Bias in Two Hundred Sentiment Analysis Systems](https://www.aclweb.org/anthology/S18-2005), Kiritchenko, Svetlana and Mohammad, Saif, 2018
6. [Social Bias in Elicited Natural Language Inferences](https://www.aclweb.org/anthology/W17-1609), Rudinger, Rachel and May, Chandler and Van Durme, Benjamin, 2017
7. [The Risk of Racial Bias in Hate Speech Detection](https://www.aclweb.org/anthology/P19-1163), Sap, Maarten and Card, Dallas and Gabriel, Saadia and Choi, Yejin and Smith, Noah A., 2019
8. [Social Bias Frames: Reasoning about Social and Power Implications of Language](https://www.aclweb.org/anthology/2020.acl-main.486), Sap, Maarten and Gabriel, Saadia and Qin, Lianhui and Jurafsky, Dan and Smith, Noah A. and Choi, Yejin, 2020
9. [Do Neural Language Models Overcome Reporting Bias?](https://www.aclweb.org/anthology/2020.coling-main.605), Shwartz, Vered and Choi, Yejin, 2020
10. [Context in Informational Bias Detection](https://www.aclweb.org/anthology/2020.coling-main.556), van den Berg, Esther and Markert, Katja, 2020
11. [Comparative Evaluation of Label-Agnostic Selection Bias in Multilingual Hate Speech Datasets](https://www.aclweb.org/anthology/2020.emnlp-main.199), Ousidhoum, Nedjma and Song, Yangqiu and Yeung, Dit-Yan, 2020
12. [Detecting and Reducing Bias in a High Stakes Domain](https://www.aclweb.org/anthology/D19-1483), Zhong, Ruiqi and Chen, Yanda and Patton, Desmond and Selous, Charlotte and McKeown, Kathy, 2019
15. [Measuring the Effects of Bias in Training Data for Literary Classification](https://www.aclweb.org/anthology/2020.latechclfl-1.9), Bagga, Sunyam and Piper, Andrew, 2020
16. [Unsupervised Discovery of Implicit Gender Bias](https://www.aclweb.org/anthology/2020.emnlp-main.44), Field, Anjalie and Tsvetkov, Yulia, 2020
17. [Evaluating Debiasing Techniques for Intersectional Biases](https://arxiv.org/abs/2109.10441), Subramanian, Shivashankar and Han, Xudong and Baldwin, Timothy and Cohn, Trevor and Frermann, Lea , EMNLP 2021
18. [Towards Automatic Bias Detection in Knowledge Graphs](https://arxiv.org/abs/2109.10697), Keidar, Daphna and Zhong, Mian and Zhang, Ce and Shrestha, Yash Raj and Paudel, Bibek, EMNLP, 2021
19. [Uncovering Implicit Gender Bias in Narratives through Commonsense Inference](https://arxiv.org/abs/2109.06437), Huang, Tenghao and Brahman, Faeze and Shwartz, Vered and Chaturvedi, Snigdha, EMNLP 2021
17. [Is Your Classifier Actually Biased? Measuring Fairness under Uncertainty with Bernstein Bounds](https://www.aclweb.org/anthology/2020.acl-main.262/), Ethayarajh, Kawin, 2020
29. [Suum Cuique: Studying Bias in Taboo Detection with a Community Perspective](https://arxiv.org/abs/2203.11401). Osama Khalid, Jonathan Rusert, Padmini Srinivasan. ACL 2022 Findings
30. [Your fairness may vary: Pretrained language model fairness in toxic text classification](https://arxiv.org/abs/2108.01250). Ioana Baldini, Dennis Wei, Karthikeyan Natesan Ramamurthy, Mikhail Yurochkin, Moninder Singh. ACL 2022 Findings
31. [Features or Spurious Artifacts? Data-centric Baselines for Fair and Robust Hate Speech Detection](https://aclanthology.org/2022.naacl-main.221.pdf). Alan Ramponi, Sara Tonelli. NAACL 2022
32. [Gender Bias in Masked Language Models for Multiple Languages](https://aclanthology.org/2022.naacl-main.197.pdf). Masahiro Kaneko, Aizhan Imankulova, Danushka Bollegala, Naoaki Okazaki. NAACL 2022
33. [Using Natural Sentence Prompts for Understanding Biases in Language Models](https://arxiv.org/abs/2205.06303). Sarah Alnegheimish, Alicia Guo, Yi Sun. NAACL 2022
34. [Easy Adaptation to Mitigate Gender Bias in Multilingual Text Classification](https://arxiv.org/abs/2204.05459). Xiaolei Huang. NAACL 2022
35. [On Measuring Social Biases in Prompt-Based Multi-Task Learning](https://aclanthology.org/2022.findings-naacl.42.pdf). Afra Feyza Akyürek, Sejin Paik, Muhammed Yusuf Kocyigit, Seda Akbiyik, Şerife Leman Runyun, Derry Wijaya. NAACL 2022 Findings
36. [Unpacking the Interdependent Systems of Discrimination: Ableist Bias in NLP Systems through an Intersectional Lens](https://aclanthology.org/2021.findings-emnlp.267/). Saad Hassan, Matt Huenerfauth, Cecilia Ovesdotter Alm. EMNLP 2021
37. [From Pretraining Data to Language Models to Downstream Tasks: Tracking the Trails of Political Biases Leading to Unfair NLP Models](https://aclanthology.org/2023.acl-long.656/). Shangbin Feng, Chan Young Park, Yuhan Liu, Yulia Tsvetkov. ACL 2023
38. [FairPrism: Evaluating Fairness-Related Harms in Text Generation](https://aclanthology.org/2023.acl-long.343/). Eve Fleisig, Aubrie Amstutz, Chad Atalla, Su Lin Blodgett, Hal Daumé III, Alexandra Olteanu, Emily Sheng, Dan Vann, Hanna Wallach. ACL 2023
39. [MISGENDERED: Limits of Large Language Models in Understanding Pronouns](https://aclanthology.org/2023.acl-long.293/). Tamanna Hossain, Sunipa Dev, Sameer Singh. ACL 2023
40. [Are Fairy Tales Fair? Analyzing Gender Bias in Temporal Narrative Event Chains of Children’s Fairy Tales](https://aclanthology.org/2023.acl-long.359/). Paulina Toro Isaza, Guangxuan Xu, Toye Oloko, Yufang Hou, Nanyun Peng, Dakuo Wang. ACL 2023
41. [Measuring Intersectional Biases in Historical Documents](https://aclanthology.org/2023.findings-acl.170/). Nadav Borenstein, Karolina Stanczak, Thea Rolskov, Natacha Klein Käfer, Natália da Silva Perez, Isabelle Augenstein. ACl 2023 Findings.
42. [This prompt is measuring : evaluating bias evaluation in language models](https://aclanthology.org/2023.findings-acl.139/). Seraphina Goldfarb-Tarrant, Eddie Ungless, Esma Balkir, Su Lin Blodgett. ACL 2023 Findings
43. [Speaking Multiple Languages Affects the Moral Bias of Language Models](https://aclanthology.org/2023.findings-acl.134/). Katharina Haemmerl, Bjoern Deiseroth, Patrick Schramowski, Jindřich Libovický, Constantin Rothkopf, Alexander Fraser, Kristian Kersting. ACL 2023 Findings
44. [With Prejudice to None: A Few-Shot, Multilingual Transfer Learning Approach to Detect Social Bias in Low Resource Languages](https://aclanthology.org/2023.findings-acl.842/). Nihar Sahoo, Niteesh Mallela, Pushpak Bhattacharyya. ACL 2023 Findings
45. [Run Like a Girl! Sport-Related Gender Bias in Language and Vision](https://aclanthology.org/2023.findings-acl.886/). Sophia Harrison, Eleonora Gualdoni, Gemma Boleda. ACL 2023 Findings
46. [Race, Gender, and Age Biases in Biomedical Masked Language Models](https://aclanthology.org/2023.findings-acl.749/). Michelle Kim, Junghwan Kim, Kristen Johnson. ACL 2023 Findings
47. [Stereotypes and Smut: The (Mis)representation of Non-cisgender Identities by Text-to-Image Models](https://aclanthology.org/2023.findings-acl.502/). Eddie Ungless, Bjorn Ross, Anne Lauscher. ACL 2023 Findings
48. [Towards Procedural Fairness: Uncovering Biases in How a Toxic Language Classifier Uses Sentiment Information](https://aclanthology.org/2022.blackboxnlp-1.18/). Isar Nejadgholi, Esma Balkir, Kathleen Fraser, Svetlana Kiritchenko. EMNLP 2022
49. [“I’m sorry to hear that”: Finding New Biases in Language Models with a Holistic Descriptor Dataset](https://aclanthology.org/2022.emnlp-main.625/). Eric Michael Smith, Melissa Hall, Melanie Kambadur, Eleonora Presani, Adina Williams. EMNLP 2022
50. [Mind Your Bias: A Critical Review of Bias Detection Methods for Contextual Language Models](https://aclanthology.org/2022.findings-emnlp.311/). Silke Husse, Andreas Spitz. EMNLP 2022
51. [Bias Against 93 Stigmatized Groups in Masked Language Models and Downstream Sentiment Classification Tasks](https://dl.acm.org/doi/10.1145/3593013.3594109). Katelyn X. Mei, Sonia Fereidooni, Aylin Caliskan. ACM FAccT 2023
52. [On the Independence of Association Bias and Empirical Fairness in Language Models](https://dl.acm.org/doi/10.1145/3593013.3594004). Laura Cabello, Anna Katrine Jørgensen, Anders Søgaard. ACM FAccT 2023##### Bias Mitigation
1. [Reducing Gender Bias in Abusive Language Detection](https://www.aclweb.org/anthology/D18-1302), Park, Ji Ho and Shin, Jamin and Fung, Pascale, 2018
1. [On Measuring and Mitigating Biased Inferences of Word Embeddings](https://arxiv.org/abs/1908.09369), Dev, Sunipa and Li, Tao and Phillips, Jeff M and Srikumar, Vivek, 2019
2. [Debiasing Embeddings for Reduced Gender Bias in Text Classification](https://www.aclweb.org/anthology/W19-3810), Prost, Flavien and Thain, Nithum and Bolukbasi, Tolga, 2019
3. [Reducing Gender Bias in Word-Level Language Models with a Gender-Equalizing Loss Function](https://www.aclweb.org/anthology/P19-2031), Qian, Yusu and Muaz, Urwa and Zhang, Ben and Hyun, Jae Won, 2019
4. [Linguistic Models for Analyzing and Detecting Biased Language](https://www.aclweb.org/anthology/P13-1162), Recasens, Marta and Danescu-Niculescu-Mizil, Cristian and Jurafsky, Dan, 2013
5. [What's in a Name? Reducing Bias in Bios without Access to Protected Attributes](https://www.aclweb.org/anthology/N19-1424), Romanov, Alexey and De-Arteaga, Maria and Wallach, Hanna and Chayes, Jennifer and Borgs, Christian and Chouldechova, Alexandra and Geyik, Sahin and Kenthapadi, Krishnaram and Rumshisky, Anna and Kalai, Adam, 2019
13. [Demoting Racial Bias in Hate Speech Detection](https://www.aclweb.org/anthology/2020.socialnlp-1.2), Xia, Mengzhou and Field, Anjalie and Tsvetkov, Yulia, 2020
14. [Balanced Datasets Are Not Enough: Estimating and Mitigating Gender Bias in Deep Image Representations](https://arxiv.org/abs/1811.08489), Wang, Tianlu and Zhao, Jieyu and Yatskar, Mark and Chang, Kai-Wei and Ordonez, Vicente, 2019
15. [Fairness without Demographics through Adversarially Reweighted Learning
](https://arxiv.org/abs/2006.13114), Preethi Lahoti, Alex Beutel, Jilin Chen, Kang Lee, Flavien Prost, Nithum Thain, Xuezhi Wang, Ed H. Chi, 2020.
16. [On Dyadic Fairness: Exploring and Mitigating Bias in Graph Connections](https://openreview.net/pdf?id=xgGS6PmzNq6), Peizhao Li, Yifei Wang, Han Zhao, Pengyu Hong, Hongfu Liu, 2021
17. [Challenges in Automated Debiasing for Toxic Language Detection](https://arxiv.org/abs/2102.00086), Zhou, Xuhui and Sap, Maarten and Swayamdipta, Swabha and Choi, Yejin and Smith, Noah A, 2021
18. [Mitigating Language-Dependent Ethnic Bias in BERT](https://arxiv.org/abs/2109.05704), Ahn, Jaimeen and Oh, Alice, EMNLP, 2021
19. [Sustainable Modular Debiasing of Language Models](https://arxiv.org/abs/2109.03646), Lauscher, Anne and Lüken, Tobias and Glavaš, Goran, EMNLP, 2021
20. [An Empirical Survey of the Effectiveness of Debiasing Techniques for Pre-trained Language Models](https://aclanthology.org/2022.acl-long.132/). Nicholas Meade, Elinor Poole-Dayan, Siva Reddy. ACL 2022
15. [Fair and Argumentative Language Modeling for Computational Argumentation](https://arxiv.org/abs/2204.04026). Carolin Holtermann, Anne Lauscher, Simone Paolo Ponzetto. ACL 2022.
16. [Upstream Mitigation Is Not All You Need: Testing the Bias Transfer Hypothesis in Pre-Trained Language Models](https://aclanthology.org/2022.acl-long.247/). Ryan Steed, Swetasudha Panda, Ari Kobren, Michael Wick. ACL 2022
17. [Mitigating Gender Bias in Distilled Language Models via Counterfactual Role Reversal](https://arxiv.org/abs/2203.12574). Umang Gupta, Jwala Dhamala, Varun Kumar, Apurv Verma, Yada Pruksachatkun, Satyapriya Krishna, Rahul Gupta, Kai-Wei Chang, Greg Ver Steeg, Aram Galstyan. ACL 2022 Findings.
18. [How Gender Debiasing Affects Internal Model Representations, and Why It Matters](https://arxiv.org/abs/2204.06827). Hadas Orgad, Seraphina Goldfarb-Tarrant, Yonatan Belinkov. NAACL 2022
19. [Are Gender-Neutral Queries Really Gender-Neutral? Mitigating Gender Bias in Image Search](https://aclanthology.org/2021.emnlp-main.151/). Jialu Wang, Yang Liu, Xin Wang. EMNLP 2021
20. [Prompt Tuning Pushes Farther, Contrastive Learning Pulls Closer: A Two-Stage Approach to Mitigate Social Biases](https://aclanthology.org/2023.acl-long.797/). Yingji Li, Mengnan Du, Xin Wang, Ying Wang. ACL 2023
21. [Social-Group-Agnostic Bias Mitigation via the Stereotype Content Model](https://aclanthology.org/2023.acl-long.227/). Ali Omrani, Alireza Salkhordeh Ziabari, Charles Yu, Preni Golazizian, Brendan Kennedy, Mohammad Atari, Heng Ji, Morteza Dehghani. ACL 2023
22. [BLIND: Bias Removal With No Demographics](https://aclanthology.org/2023.acl-long.490/). Hadas Orgad, Yonatan Belinkov. ACL 2023
23. [CHBias: Bias Evaluation and Mitigation of Chinese Conversational Language Models](https://aclanthology.org/2023.acl-long.757/). Jiaxu Zhao, Meng Fang, Zijing Shi, Yitong Li, Ling Chen, Mykola Pechenizkiy. ACL 2023
24. [D-CALM: A Dynamic Clustering-based Active Learning Approach for Mitigating Bias](https://aclanthology.org/2023.findings-acl.342/). Sabit Hassan, Malihe Alikhani. ACL 2023 Findings
25. [Debiasing should be Good and Bad: Measuring the Consistency of Debiasing Techniques in Language Models](https://aclanthology.org/2023.findings-acl.280/). Robert Morabito, Jad Kabbara, Ali Emami. ACL 2023 Findings
26. [Gender-tuning: Empowering Fine-tuning for Debiasing Pre-trained Language Models](https://aclanthology.org/2023.findings-acl.336/). Somayeh Ghanbarzadeh, Yan Huang, Hamid Palangi, Radames Cruz Moreno, Hamed Khanpour. ACL 2023 Findings
27. [Bias Beyond English: Counterfactual Tests for Bias in Sentiment Analysis in Four Languages](https://aclanthology.org/2023.findings-acl.272/). Seraphina Goldfarb-Tarrant, Adam Lopez, Roi Blanco, Diego Marcheggiani. ACL 2023 Findings
28. [On Evaluating and Mitigating Gender Biases in Multilingual Settings](https://aclanthology.org/2023.findings-acl.21/). Aniket Vashishtha, Kabir Ahuja, Sunayana Sitaram. ACL 2023 Findings
29. [Perturbation Augmentation for Fairer NLP](https://aclanthology.org/2022.emnlp-main.646/). Rebecca Qian, Candace Ross, Jude Fernandes, Eric Michael Smith, Douwe Kiela, Adina Williams. EMNLP 2022
30. [MABEL: Attenuating Gender Bias using Textual Entailment Data](https://aclanthology.org/2022.emnlp-main.657/). Jacqueline He, Mengzhou Xia, Christiane Fellbaum, Danqi Chen. EMNLP 2022
31. [Balancing out Bias: Achieving Fairness Through Balanced Training](https://aclanthology.org/2022.emnlp-main.779/). Xudong Han, Timothy Baldwin, Trevor Cohn. EMNLP 2022
32. [Debiasing Masks: A New Framework for Shortcut Mitigation in NLU](https://aclanthology.org/2022.emnlp-main.517/). Johannes Mario Meissner, Saku Sugawara, Akiko Aizawa. EMNLP 2022
33. [Don’t Just Clean It, Proxy Clean It: Mitigating Bias by Proxy in Pre-Trained Models](https://aclanthology.org/2022.findings-emnlp.372/). Swetasudha Panda, Ari Kobren, Michael Wick, Qinlan Shen. EMNLP 2022
34. [To Prefer or to Choose? Generating Agency and Power Counterfactuals Jointly for Gender Bias Mitigation](https://aclanthology.org/2022.nlpcss-1.6/). Maja Stahl, Maximilian Spliethöver, Henning Wachsmuth. EMNLP 2022
35. [A Robust Bias Mitigation Procedure Based on the Stereotype Content Model](https://aclanthology.org/2022.nlpcss-1.23/). Eddie Ungless, Amy Rafferty, Hrichika Nag, Björn Ross. EMNLP 2022#### Natural Language Generation
##### Machine Translation
1. [Towards Mitigating Gender Bias in a decoder-based Neural Machine Translation model by Adding Contextual Information](https://www.aclweb.org/anthology/2020.winlp-1.25), Basta, Christine and Costa-jussà, Marta R. and Fonollosa, José A. R., 2020
1. [On Measuring Gender Bias in Translation of Gender-neutral Pronouns](https://www.aclweb.org/anthology/W19-3824), Cho, Won Ik and Kim, Ji Won and Kim, Seok Min and Kim, Nam Soo, 2019
1. [Fine-tuning Neural Machine Translation on Gender-Balanced Datasets](https://www.aclweb.org/anthology/2020.gebnlp-1.3), Costa-jussà, Marta R. and de Jorge, Adrià, 2020
1. [Equalizing Gender Bias in Neural Machine Translation with Word Embeddings Techniques](https://www.aclweb.org/anthology/W19-3821), Escudé Font, Joel and Costa-jussà, Marta R., 2019
1. [Automatically Identifying Gender Issues in Machine Translation using Perturbations](https://www.aclweb.org/anthology/2020.findings-emnlp.180), Gonen, Hila and Webster, Kellie, 2020
1. [Gender Coreference and Bias Evaluation at WMT 2020](https://www.aclweb.org/anthology/2020.wmt-1.39), Kocmi, Tom and Limisiewicz, Tomasz and Stanovsky, Gabriel, 2020
1. [Filling Gender & Number Gaps in Neural Machine Translation with Black-box Context Injection](https://www.aclweb.org/anthology/W19-3807), Moryossef, Amit and Aharoni, Roee and Goldberg, Yoav, 2019
1. [Reducing Gender Bias in Neural Machine Translation as a Domain Adaptation Problem](https://www.aclweb.org/anthology/2020.acl-main.690), Saunders, Danielle and Byrne, Bill, 2020
1. [Neural Machine Translation Doesn't Translate Gender Coreference Right Unless You Make It](https://www.aclweb.org/anthology/2020.gebnlp-1.4), Saunders, Danielle and Sallis, Rosie and Byrne, Bill, 2020
1. [Mitigating Gender Bias in Machine Translation with Target Gender Annotations](https://www.aclweb.org/anthology/2020.wmt-1.73), Stafanovičs, Artūrs and Pinnis, Mārcis and Bergmanis, Toms, 2020
1. [Evaluating Gender Bias in Machine Translation](https://www.aclweb.org/anthology/P19-1164), Stanovsky, Gabriel and Smith, Noah A. and Zettlemoyer, Luke, 2019
1. [Getting Gender Right in Neural Machine Translation](https://www.aclweb.org/anthology/D18-1334), Vanmassenhove, Eva and Hardmeier, Christian and Way, Andy, 2018
1. ["You Sound Just Like Your Father" Commercial Machine Translation Systems Include Stylistic Biases](https://www.aclweb.org/anthology/2020.acl-main.154), Hovy, Dirk and Bianchi, Federico and Fornaciari, Tommaso, 2020
1. [Assessing gender bias in machine translation: a case study with google translate](https://arxiv.org/abs/1809.02208), Prates, Marcelo O. R. and Avelar, Pedro H. C. and Lamb, Luis, 2019
1. [Gender Bias in Multilingual Neural Machine Translation: The Architecture Matters](https://arxiv.org/abs/2012.13176), Costa-jussà, Marta R. and Escolano, Carlos and Basta, Christine and Ferrando, Javier and Batlle, Roser and Kharitonova, Ksenia, 2020
1. [How to Measure Gender Bias in Machine Translation: Optimal Translators, Multiple Reference Points](https://arxiv.org/abs/2011.06445), Farkas, Anna and Németh, Renáta, 2020
1. [Gender aware spoken language translation applied to English-Arabic](https://arxiv.org/abs/1802.09287), Elaraby, Mostafa and Tawfik, Ahmed Y and Khaled, Mahmoud and Hassan, Hany and Osama, Aly, 2018
1. [Type {B} Reflexivization as an Unambiguous Testbed for Multilingual Multi-Task Gender Bias](https://www.aclweb.org/anthology/2020.emnlp-main.209), Gonz{\'a}lez, Ana Valeria and Barrett, Maria and Hvingelby, Rasmus and Webster, Kellie and S{\o}gaard, Anders, 2020
19. [Measuring and Mitigating Name Biases in Neural Machine Translation](https://aclanthology.org/2022.acl-long.184.pdf). Jun Wang, Benjamin Rubinstein, Trevor Cohn. ACL 2022
20. [GFST: Gender-Filtered Self-Training for More Accurate Gender in Translation](https://aclanthology.org/2021.emnlp-main.123/). Prafulla Kumar Choubey, Anna Currey, Prashant Mathur, Georgiana Dinu. EMNLP 2021
21. [What about “em”? How Commercial Machine Translation Fails to Handle (Neo-)Pronouns](https://aclanthology.org/2023.acl-long.23/). Anne Lauscher, Debora Nozza, Ehm Miltersen, Archie Crowley, Dirk Hovy. ACL 2023
22. [How sensitive are translation systems to extra contexts? Mitigating gender bias in Neural Machine Translation models through relevant contexts.](https://aclanthology.org/2022.findings-emnlp.143/). Shanya Sharma, Manan Dey, Koustuv Sinha. EMNLP 2022##### Dialogue Generation
1. [Conversational Assistants and Gender Stereotypes: Public Perceptions and Desiderata for Voice Personas](https://www.aclweb.org/anthology/2020.gebnlp-1.7), Cercas Curry, Amanda and Robertson, Judy and Rieser, Verena 2020
1. [Does Gender Matter? Towards Fairness in Dialogue Systems](https://www.aclweb.org/anthology/2020.coling-main.390), Liu, Haochen and Dacon, Jamell and Fan, Wenqi and Liu, Hui and Liu, Zitao and Tang, Jiliang, 2020
1. [Mitigating Gender Bias for Neural Dialogue Generation with Adversarial Learning](https://www.aclweb.org/anthology/2020.emnlp-main.64), Liu, Haochen and Wang, Wentao and Wang, Yiqi and Liu, Hui and Liu, Zitao and Tang, Jiliang, 2020
1. [Queens are Powerful too: Mitigating Gender Bias in Dialogue Generation](https://www.aclweb.org/anthology/2020.emnlp-main.656), Dinan, Emily and Fan, Angela and Williams, Adina and Urbanek, Jack and Kiela, Douwe and Weston, Jason, 2020
1. [Ethical challenges in data-driven dialogue systems](https://arxiv.org/abs/1711.09050), Henderson, Peter and Sinha, Koustuv and Angelard-Gontier, Nicolas and Ke, Nan Rosemary and Fried, Genevieve and Lowe, Ryan and Pineau, Joelle, 2018
1. ["Nice Try, Kiddo": Ad Hominems in Dialogue Systems](https://arxiv.org/abs/2010.12820), Sheng, Emily and Chang, Kai-Wei and Natarajan, Premkumar and Peng, Nanyun, 2020
7. [The Moral Integrity Corpus: A Benchmark for Ethical Dialogue Systems](https://arxiv.org/abs/2204.03021). Caleb Ziems, Jane A. Yu, Yi-Chia Wang, Alon Halevy, Diyi Yang. ACL 2022.
8. [First the Worst: Finding Better Gender Translations During Beam Search](https://aclanthology.org/2022.findings-acl.301/). Danielle Saunders, Rosie Sallis, Bill Byrne. ACL 2022 Findings
9. [Hate Speech and Counter Speech Detection: Conversational Context Does Matter](https://aclanthology.org/2022.naacl-main.433.pdf). Xinchen Yu, Eduardo Blanco, Lingzi Hong. NAACL 2022.##### Other Generation
1. [Gender-Aware Reinflection using Linguistically Enhanced Neural Models](https://www.aclweb.org/anthology/2020.gebnlp-1.12), Alhafni, Bashar and Habash, Nizar and Bouamor, Houda, 2020
1. [Identifying and Reducing Gender Bias in Word-Level Language Models](https://www.aclweb.org/anthology/N19-3002), Bordia, Shikha and Bowman, Samuel R., 2019
1. [Investigating African-American Vernacular English in Transformer-Based Text Generation](https://www.aclweb.org/anthology/2020.emnlp-main.473), Groenwold, Sophie and Ou, Lily and Parekh, Aesha and Honnavalli, Samhita and Levy, Sharon and Mirza, Diba and Wang, William Yang, 2020
1. [Automatic Gender Identification and Reinflection in Arabic](https://www.aclweb.org/anthology/W19-3822), Habash, Nizar and Bouamor, Houda and Chung, Christine, 2019
1. [Reducing Sentiment Bias in Language Models via Counterfactual Evaluation](https://www.aclweb.org/anthology/2020.findings-emnlp.7), Huang, Po-Sen and Zhang, Huan and Jiang, Ray and Stanforth, Robert and Welbl, Johannes and Rae, Jack and Maini, Vishal and Yogatama, Dani and Kohli, Pushmeet, 2020
2. [PowerTransformer: Unsupervised Controllable Revision for Biased Language Correction](https://www.aclweb.org/anthology/2020.emnlp-main.602), Ma, Xinyao and Sap, Maarten and Rashkin, Hannah and Choi, Yejin, 2020
1. [Reducing Non-Normative Text Generation from Language Models](https://www.aclweb.org/anthology/2020.inlg-1.43), Peng, Xiangyu and Li, Siyan and Frazier, Spencer and Riedl, Mark, 2020
1. [The Woman Worked as a Babysitter: On Biases in Language Generation](https://www.aclweb.org/anthology/D19-1339), Sheng, Emily and Chang, Kai-Wei and Natarajan, Premkumar and Peng, Nanyun, 2019
1. [Towards Controllable Biases in Language Generation](https://www.aclweb.org/anthology/2020.findings-emnlp.291), Sheng, Emily and Chang, Kai-Wei and Natarajan, Premkumar and Peng, Nanyun, 2020
2. [RealToxicityPrompts: Evaluating Neural Toxic Degeneration in Language Models](https://www.aclweb.org/anthology/2020.findings-emnlp.301/), Gehman, Sam and Gururangan, Suchin and Sap, Maarten and Choi, Yejin and Smith, Noah A, 2020
3. ["You are grounded!": Latent Name Artifacts in Pre-trained Language Models](https://www.aclweb.org/anthology/2020.emnlp-main.556), Shwartz, Vered and Rudinger, Rachel and Tafjord, Oyvind, 2020
4. [Defining and Evaluating Fair Natural Language Generation](https://www.aclweb.org/anthology/2020.winlp-1.27), Yeo, Catherine and Chen, Alyssa, 2020
5. [Counterfactual Data Augmentation for Mitigating Gender Stereotypes in Languages with Rich Morphology](https://www.aclweb.org/anthology/P19-1161), Zmigrod, Ran and Mielke, Sabrina J. and Wallach, Hanna and Cotterell, Ryan, 2019
6. [Investigating Gender Bias in Language Models Using Causal Mediation Analysis](https://papers.nips.cc/paper/2020/hash/92650b2e92217715fe312e6fa7b90d82-Abstract.html), Vig, Jesse and Gehrmann, Sebastian and Belinkov, Yonatan and Qian, Sharon and Nevo, Daniel and Singer, Yaron and Shieber, Stuart, 2020
7. [Release strategies and the social impacts of language models](https://arxiv.org/abs/1908.09203), Solaiman, Irene and Brundage, Miles and Clark, Jack and Askell, Amanda and Herbert-Voss, Ariel and Wu, Jeff and Radford, Alec and Krueger, Gretchen and Kim, Jong Wook and Kreps, Sarah and others, 2019
8. [Automatically neutralizing subjective bias in text](https://ojs.aaai.org//index.php/AAAI/article/view/5385), Pryzant, Reid and Martinez, Richard Diehl and Dass, Nathan and Kurohashi, Sadao and Jurafsky, Dan and Yang, Diyi, 2020
9. [Language models are few-shot learners](https://arxiv.org/abs/2005.14165), Brown, Tom B and Mann, Benjamin and Ryder, Nick and Subbiah, Melanie and Kaplan, Jared and Dhariwal, Prafulla and Neelakantan, Arvind and Shyam, Pranav and Sastry, Girish and Askell, Amanda and others, 2020
10. [BOLD: Dataset and Metrics for Measuring Biases in Open-Ended Language Generation](https://arxiv.org/abs/2101.11718), Dhamala, Jwala and Sun, Tony and Kumar, Varun and Krishna, Satyapriya and Pruksachatkun, Yada and Chang, Kai-Wei and Gupta, Rahul, 2021
11. [Viable Threat on News Reading: Generating Biased News Using Natural Language Models](https://www.aclweb.org/anthology/2020.nlpcss-1.7), Gupta, Saurabh and Nguyen, Hong Huy and Yamagishi, Junichi and Echizen, Isao, 2020
12. [Investigating Societal Biases in a Poetry Composition System](https://www.aclweb.org/anthology/2020.gebnlp-1.9), Sheng, Emily and Uthus, David, 2020
13. [De-Biased Court's View Generation with Causality](https://www.aclweb.org/anthology/2020.emnlp-main.56), Wu, Yiquan and Kuang, Kun and Zhang, Yating and Liu, Xiaozhong and Sun, Changlong and Xiao, Jun and Zhuang, Yueting and Si, Luo and Wu, Fei, 2020
14. [Detoxifying Language Models Risks Marginalizing Minority Voices](https://arxiv.org/abs/2104.06390), Xu, Albert and Pathak, Eshaan and Wallace, Eric and Gururangan, Suchin, and Sap, Maarten and Klein, Dan, 2021
15. [Detect and Perturb: Neutral Rewriting of Biased and Sensitive Text via Gradient-based Decoding](https://arxiv.org/abs/2109.11708), He, Zexue and Majumder, Bodhisattwa Prasad and McAuley, Julian, EMNLP, 2021
24. [Auto-Debias: Debiasing Masked Language Models with Automated Biased Prompts](https://aclanthology.org/2022.acl-long.72.pdf). Yue Guo, Yi Yang, Ahmed Abbasi. ACL 2022.
25. [A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for African News Translation](https://aclanthology.org/2022.naacl-main.223.pdf). David Adelani et. al. NAACL 2022.
26. [Exploiting Biased Models to De-bias Text: A Gender-Fair Rewriting Model](https://aclanthology.org/2023.acl-long.246/). Chantal Amrhein, Florian Schottmann, Rico Sennrich, Samuel Läubli. ACL 2023
27. [Towards Robust NLG Bias Evaluation with Syntactically-diverse Prompts](https://aclanthology.org/2022.findings-emnlp.445/). Arshiya Aggarwal, Jiao Sun, Nanyun Peng. EMNLP 2022
28. [“I’m fully who I am”: Towards Centering Transgender and Non-Binary Voices to Measure Biases in Open Language Generation](https://dl.acm.org/doi/10.1145/3593013.3594078). Anaelia Ovalle, Palash Goyal, Jwala Dhamala, Zachary Jaggers, Kai-Wei Chang, Aram Galstyan, Richard Zemel, Rahul Gupta. ACM FAccT 2023#### Multi-Modal Setting
##### Bias Detection in Multi-Modal Setting
1. [Studying Bias in GANs through the Lens of Race](https://arxiv.org/abs/2209.02836), Maluleke, Vongani H. and Thakkar, Neerja and Brooks, Tim and Weber, Ethan and Darrell, Trevor and Efros, Alexei A. and Kanazawa, Angjoo and Guillory, Devin, 2022
2. [Imperfect ImaGANation: Implications of GANs Exacerbating Biases on Facial Data Augmentation and Snapchat Selfie Lenses](https://www.semanticscholar.org/paper/Imperfect-ImaGANation%3A-Implications-of-GANs-Biases-Jain-Hernandez/2b15d1a1b354573b3ce23b18991d15c850a8546b), Jain, Niharika and Hernandez, Alberto Olmo and Sengupta, Sailik and Manikonda, Lydia and Kambhampati, S., 2020
3. [DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generation Models](https://arxiv.org/abs/2202.04053), Cho, Jaemin and Zala, Abhay and Bansal, Mohit, 2022
4. [Easily Accessible Text-to-Image Generation Amplifies Demographic Stereotypes at Large Scale](https://arxiv.org/abs/2211.03759), Bianchi, Federico and Kalluri, Pratyusha and Durmus, Esin and Ladhak, Faisal and Cheng, Myra and Nozza, Debora and Hashimoto, Tatsunori and Jurafsky, Dan and Zou, James and Caliskan, Aylin, 2022
5. [Social Biases through the Text-to-Image Generation Lens](https://arxiv.org/abs/2304.06034), Naik, Ranjita and Nushi, Besmira, 2023
6. [T2IAT: Measuring Valence and Stereotypical Biases in Text-to-Image Generation](https://aclanthology.org/2023.findings-acl.160/), Wang, Jialu and Liu, Xinyue and Di, Zonglin and Liu, Yang and Wang, Xin, ACL 2023
7. [The Bias Amplification Paradox in Text-to-Image Generation](https://arxiv.org/abs/2308.00755), Seshadri, Preethi and Singh, Sameer and Elazar, Yanai, 2023
8. [Fair Diffusion: Instructing Text-to-Image Generation Models on Fairness](https://arxiv.org/abs/2302.10893), Friedrich, Felix and Brack, Manuel and Struppek, Lukas and Hintersdorf, Dominik and Schramowski, Patrick and Luccioni, Sasha and Kersting, Kristian, 2023
9. [Uncurated image-text datasets: Shedding light on demographic bias.](https://openaccess.thecvf.com/content/CVPR2023/papers/Garcia_Uncurated_Image-Text_Datasets_Shedding_Light_on_Demographic_Bias_CVPR_2023_paper.pdf), Garcia, Noa and Hirota, Yusuke and Wu, Yankun and Nakashima, Yuta, CVPR 2023
10. [Word-Level Explanations for Analyzing Bias in Text-to-Image Models](https://arxiv.org/abs/2306.05500), Lin, Alexander and Paes, Lucas Monteiro and Tanneru, Sree Harsha and Srinivas, Suraj and Lakkaraju, Himabindu, 2023##### Bias Mitigation in Multi-Modal Setting
1. [Improving the Fairness of Deep Generative Models without Retraining](https://arxiv.org/abs/2012.04842), Tan, Shuhan and Shen, Yujun and Zhou, Bolei, 2020
2. [RepFair-GAN: Mitigating Representation Bias in GANs Using Gradient Clipping](https://arxiv.org/abs/2207.10653), Kenfack, Patrik Joslin and Sabbagh, Kamil and Rivera, Adín Ramírez and Khan, Adil, 2022
3. [The Bias Amplification Paradox in Text-to-Image Generation](https://arxiv.org/abs/2308.00755), Seshadri, Preethi and Singh, Sameer and Elazar, Yanai, 2023
4. [Fair Diffusion: Instructing Text-to-Image Generation Models on Fairness](https://arxiv.org/abs/2302.10893), Friedrich, Felix and Brack, Manuel and Struppek, Lukas and Hintersdorf, Dominik and Schramowski, Patrick and Luccioni, Sasha and Kersting, Kristian, 2023#### Bias Visualization
1. [Fairsight: Visual analytics for fairness in decision making](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8805420), Ahn, Yongsu and Lin, Yuru, 2019
1. [FairVis: Visual Analytics for Discovering Intersectional Bias in Machine Learning](https://arxiv.org/pdf/1904.05419.pdf), Cabrera, Ángel Alexander and Epperson, Will and Hohman, Fred and Kahng, Minsuk and Morgenstern, Jamie and Chau, Duen Horng, 2021
2. [VERB: Visualizing and Interpreting Bias Mitigation Techniques for Word Representations](https://arxiv.org/pdf/2104.02797.pdf), Archit Rathore, Archit and Dev, Sunipa and Phillips, Jeff M. and Srikumar, Vivek and Zheng, Yan and Yeh, Chin-Chia Michael and Wang, Junpeng and Zhang, Wei and Wang, Bei, 2021
3. [DebIE: A Platform for Implicit and Explicit Debiasing of Word Embedding Spaces](https://arxiv.org/abs/2103.06598), Friedrich, Niklas and Lauscher, Anne and Ponzetto, Simone Paolo and Glavaš, Goran, 2021#### Others
1. [Gender bias in neural natural language processing](https://link.springer.com/chapter/10.1007/978-3-030-62077-6_14), Lu, Kaiji and Mardziel, Piotr and Wu, Fangjing and Amancharla, Preetam and Datta, Anupam, 2020
2. [Equity Beyond Bias in Language Technologies for Education](https://www.aclweb.org/anthology/W19-4446), Mayfield, Elijah and Madaio, Michael and Prabhumoye, Shrimai and Gerritsen, David and McLaughlin, Brittany and Dixon-Rom{\'a}n, Ezekiel and Black, Alan W, 2019
3. [Shedding (a Thousand Points of) Light on Biased Language](https://www.aclweb.org/anthology/W10-0723), Yano, Tae and Resnik, Philip and Smith, Noah A., 2010
1. [Dialect Diversity in Text Summarization on Twitter](https://arxiv.org/abs/2007.07860), Celis, L Elisa and Keswani, Vijay, 2020
1. [Identifying and Measuring Annotator Bias Based on Annotators' Demographic Characteristics](https://www.aclweb.org/anthology/2020.alw-1.21), Al Kuwatly, Hala and Wich, Maximilian and Groh, Georg, 2020
1. [Multilingual sentence-level bias detection in Wikipedia](https://www.aclweb.org/anthology/R19-1006), Aleksandrova, Desislava and Lareau, François and Ménard, Pierre André, 2019
1. [Automated Essay Scoring in the Presence of Biased Ratings](https://www.aclweb.org/anthology/N18-1021), Amorim, Evelin and Cançado, Marcia and Veloso, Adriano, 2018
1. [Predicting Factuality of Reporting and Bias of News Media Sources](https://www.aclweb.org/anthology/D18-1389), Baly, Ramy and Karadzhov, Georgi and Alexandrov, Dimitar and Glass, James and Nakov, Preslav, 2018
1. [We Can Detect Your Bias: Predicting the Political Ideology of News Articles](https://www.aclweb.org/anthology/2020.emnlp-main.404), Baly, Ramy and Da San Martino, Giovanni and Glass, James and Nakov, Preslav, 2020
1. [The Multilingual Affective Soccer Corpus (MASC): Compiling a biased parallel corpus on soccer reportage in English, German and Dutch](https://www.aclweb.org/anthology/W16-6612), Braun, Nadine and Goudbeek, Martijn and Krahmer, Emiel, 2016
1. [Word-order Biases in Deep-agent Emergent Communication](https://www.aclweb.org/anthology/P19-1509), Chaabouni, Rahma and Kharitonov, Eugene and Lazaric, Alessandro and Dupoux, Emmanuel and Baroni, Marco, 2019
1. [Importance sampling for unbiased on-demand evaluation of knowledge base population](https://www.aclweb.org/anthology/D17-1109), Chaganty, Arun and Paranjape, Ashwin and Liang, Percy and Manning, Christopher D., 2017
1. [Bias and Fairness in Natural Language Processing](https://www.aclweb.org/anthology/D19-2004), Chang, Kai-Wei and Prabhakaran, Vinod and Ordonez, Vicente, 2019
1. [Learning to Flip the Bias of News Headlines](https://www.aclweb.org/anthology/W18-6509), Chen, Wei-Fan and Wachsmuth, Henning and Al-Khatib, Khalid and Stein, Benno, 2018
1. [Analyzing Political Bias and Unfairness in News Articles at Different Levels of Granularity](https://www.aclweb.org/anthology/2020.nlpcss-1.16), Chen, Wei-Fan and Al Khatib, Khalid and Wachsmuth, Henning and Stein, Benno, 2020
1. [Detecting Media Bias in News Articles using Gaussian Bias Distributions](https://www.aclweb.org/anthology/2020.findings-emnlp.383), Chen, Wei-Fan and Al Khatib, Khalid and Stein, Benno and Wachsmuth, Henning, 2020
1. [Modelling Annotator Bias with Multi-task Gaussian Processes: An Application to Machine Translation Quality Estimation](https://www.aclweb.org/anthology/P13-1004), Cohn, Trevor and Specia, Lucia, 2013
1. [Masking Actor Information Leads to Fairer Political Claims Detection](https://www.aclweb.org/anthology/2020.acl-main.404), Dayanik, Erenay and Padó, Sebastian, 2020
1. [CLARIN: Towards FAIR and Responsible Data Science Using Language Resources](https://www.aclweb.org/anthology/L18-1515), de Jong, Franciska and Maegaard, Bente and De Smedt, Koenraad and Fišer, Darja and Van Uytvanck, Dieter, 2018
1. [Semi-Supervised Topic Modeling for Gender Bias Discovery in English and Swedish](https://www.aclweb.org/anthology/2020.gebnlp-1.8), Devinney, Hannah and Björklund, Jenny and Björklund, Henrik, 2020
1. [Is Your Classifier Actually Biased? Measuring Fairness under Uncertainty with Bernstein Bounds](https://www.aclweb.org/anthology/2020.acl-main.262), Ethayarajh, Kawin, 2020
1. [Team Peter Brinkmann at SemEval-2019 Task 4: Detecting Biased News Articles Using Convolutional Neural Networks](https://www.aclweb.org/anthology/S19-2180), Färber, Michael and Qurdina, Agon and Ahmedi, Lule, 2019
1. [Biases in Predicting the Human Language Model](https://www.aclweb.org/anthology/P14-2002), Fine, Alex B. and Frank, Austin F. and Jaeger, T. Florian and Van Durme, Benjamin, 2014
1. [Analyzing Biases in Human Perception of User Age and Gender from Text](https://www.aclweb.org/anthology/P16-1080), Flekova, Lucie and Carpenter, Jordan and Giorgi, Salvatore and Ungar, Lyle and Preoţiuc-Pietro, Daniel, 2016
1. [Reference Bias in Monolingual Machine Translation Evaluation](https://www.aclweb.org/anthology/P16-2013), Fomicheva, Marina and Specia, Lucia, 2016
1. [Analyzing Gender Bias within Narrative Tropes](https://www.aclweb.org/anthology/2020.nlpcss-1.23), Gala, Dhruvil and Khursheed, Mohammad Omar and Lerner, Hannah and O'Connor, Brendan and Iyyer, Mohit, 2020
1. [Detecting Political Bias in News Articles Using Headline Attention](https://www.aclweb.org/anthology/W19-4809), Gangula, Rama Rohit Reddy and Duggenpudi, Suma Reddy and Mamidi, Radhika, 2019
2. [Detecting Independent Pronoun Bias with Partially-Synthetic Data Generation](https://www.aclweb.org/anthology/2020.emnlp-main.157), Munro, Robert and Morrison, Alex (Carmen), 2020
5. [Analyzing Gender Bias in Student Evaluations](https://www.aclweb.org/anthology/C16-1083), Terkik, Andamlak and Prud{'}hommeaux, Emily and Ovesdotter Alm, Cecilia and Homan, Christopher and Franklin, Scott, 2016
30. [Ethics Sheets for AI Tasks](https://arxiv.org/pdf/2107.01183.pdf). Saif M. Mohammad. ACL 2022
31. [VALUE: Understanding Dialect Disparity in NLU](https://arxiv.org/abs/2204.03031).Caleb Ziems, Jiaao Chen, Camille Harris, Jessica Anderson, Diyi Yang. ACL 2022.
32. [Annotators with Attitudes: How Annotator Beliefs And Identities Bias Toxic Language Detection](https://www.semanticscholar.org/paper/Annotators-with-Attitudes%3A-How-Annotator-Beliefs-Sap-Swayamdipta/cf3cfb90a6d8c431dc8a7f115b011d5ffbb439ee). Maarten Sap, Swabha Swayamdipta, Laura Vianna, Xuhui Zhou, Yejin Choi, Noah Smith. NAACL 2022
33. [Multi-VALUE: A Framework for Cross-Dialectal English NLP](https://aclanthology.org/2023.acl-long.44/). Caleb Ziems, William Held, Jingfeng Yang, Jwala Dhamala, Rahul Gupta, Diyi Yang. ACL 2023
34. [Trade-Offs Between Fairness and Privacy in Language Modeling](https://aclanthology.org/2023.findings-acl.434/). Cleo Matzken, Steffen Eger, Ivan Habernal. ACL 2023 Findings
35. [Bridging Fairness and Environmental Sustainability in Natural Language Processing](https://aclanthology.org/2022.emnlp-main.533/). Marius Hessenthaler, Emma Strubell, Dirk Hovy, Anne Lauscher. EMNLP 2022
36. [Fair NLP Models with Differentially Private Text Encoders](https://aclanthology.org/2022.findings-emnlp.514/). Gaurav Maheshwari, Pascal Denis, Mikaela Keller, Aurélien Bellet. EMNLP 2022
37. [Should We Ban English NLP for a Year?](https://aclanthology.org/2022.emnlp-main.351/). Anders Søgaard. EMNLP 2022
38. [Controlling Bias Exposure for Fair Interpretable Predictions](https://aclanthology.org/2022.findings-emnlp.431/). Zexue He, Yu Wang, Julian McAuley, Bodhisattwa Prasad Majumder. EMNLP 2022### Tutorial List
- [Fairness in Machine Learning](https://nips.cc/Conferences/2017/Schedule?showEvent=8734), NeurIPS 2017
- [The Trouble with Bias](https://www.youtube.com/watch?v=fMym_BKWQzk), NeurIPS 2017
- [Socially Responsible NLP](https://www.aclweb.org/anthology/N18-6005/), NAACL 2018
- [Tutorial: Bias and Fairness in Natural Language Processing](http://web.cs.ucla.edu/~kwchang/talks/emnlp19-fairnlp/), EMNLP 2019
- [Fairness-Aware Machine Learning: Practical Challenges and Lessons Learned](https://sites.google.com/view/kdd19-fairness-tutorial), KDD 2019
- [Dealing with Bias and Fairness in Building Data Science/ML/AI Systems](https://dssg.github.io/fairness_tutorial/), KDD 2020
- [A Visual Tour of Bias Mitigation Techniques for Word Representations](http://www.sci.utah.edu/~beiwang/aaaibias2021/index.html), AAAI 2021
- [How to test the fairness of ML models? The 80% rule to measure the disparate impact](https://www.giskard.ai/knowledge/how-to-test-ml-models-5-the-80-rule-to-measure-disparity), Giskard 2023#### Jupyter/Colab Tutorial
- [Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints](https://github.com/uclanlp/reducingbias/blob/master/src/fairCRF_gender_ratio.ipynb)
- [Mitigating Gender Bias Amplification in Distribution by Posterior Regularization](https://colab.research.google.com/drive/1jBhnzxaaHMY1jbPPa1OqT8-6QxZA_T7p?authuser=2#scrollTo=YpNJrP3uBMd3)### Conference/Workshop List
- [Ethics in NLP](https://aclweb.org/aclwiki/Ethics_in_NLP), ACL Wiki
- [ACM FAccT conference](https://fatconference.org/)
- [Gendered Ambiguous Pronoun (GAP) Shared Task at the Gender Bias in NLP Workshop 2019](https://www.aclweb.org/anthology/W19-3801), Webster, Kellie and Costa-jussa, Marta R. and Hardmeier, Christian and Radford, Will, 2019
- [Proceedings of the First Workshop on Gender Bias in Natural Language Processing](https://www.aclweb.org/anthology/W19-3800), Costa-juss{\`a}, Marta R. and Hardmeier, Christian and Radford, Will and Webster, Kellie, 2019
- [Proceedings of the Second Workshop on Gender Bias in Natural Language Proceedings](https://www.aclweb.org/anthology/2020.gebnlp-1.0/), Costa-juss{\`a}, Marta R. and Hardmeier, Christian and Radford, Will and Webster, Kellie, 2020
- [Team Kermit-the-frog at SemEval-2019 Task 4: Bias Detection Through Sentiment Analysis and Simple Linguistic Features](https://www.aclweb.org/anthology/S19-2177), Anthonio, Talita and Kloppenburg, Lennart, 2019
- [Fairness and machine learning](https://fairmlbook.org/index.html)