https://github.com/udaylab/pami
PAMI is a Python library containing 100+ algorithms to discover useful patterns in various databases across multiple computing platforms. (Active)
https://github.com/udaylab/pami
frequent-itemsets frequent-pattern-mining frequent-subgraphs pattern-mining pattern-recognition periodic-patterns periodicity python sequence-mining spatial-data spatiotemporal-data spatiotemporal-data-analysis stream-mining
Last synced: 8 days ago
JSON representation
PAMI is a Python library containing 100+ algorithms to discover useful patterns in various databases across multiple computing platforms. (Active)
- Host: GitHub
- URL: https://github.com/udaylab/pami
- Owner: UdayLab
- License: gpl-3.0
- Created: 2021-06-15T04:49:15.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2025-03-25T07:45:18.000Z (about 2 months ago)
- Last Synced: 2025-04-30T02:46:16.251Z (22 days ago)
- Topics: frequent-itemsets, frequent-pattern-mining, frequent-subgraphs, pattern-mining, pattern-recognition, periodic-patterns, periodicity, python, sequence-mining, spatial-data, spatiotemporal-data, spatiotemporal-data-analysis, stream-mining
- Language: Jupyter Notebook
- Homepage: https://udaylab.github.io/PAMI/
- Size: 168 MB
- Stars: 261
- Watchers: 5
- Forks: 196
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Security: SECURITY.md
Awesome Lists containing this project
README


[](https://github.com/UdayLab/PAMI/blob/main/LICENSE)

[](https://pami-1.readthedocs.io/en/latest/?badge=latest)


[](https://github.com/UdayLab/PAMI/issues)
[](https://github.com/UdayLab/PAMI/network)
[](https://github.com/UdayLab/PAMI/stargazers)
[](https://pepy.tech/project/pami)
[](https://pepy.tech/project/pami)
[](https://pepy.tech/project/pami)
[](https://github.com/UdayLab/PAMI/actions/workflows/pages/pages-build-deployment)
[](https://github.com/UdayLab/PAMI/actions/workflows/dependabot/dependabot-updates)
[](https://github.com/UdayLab/PAMI/actions/workflows/github-code-scanning/codeql)[Click here for more information](https://pepy.tech/project/pami)
***
# Table of Contents
- [Introduction](#introduction)
- [Development process](#process-flow-chart)
- [Inputs and outputs of a PAMI algorithm](#inputs-and-outputs-of-an-algorithm-in-pami)
- [Recent updates](#recent-updates)
- [Features](#features)
- [Maintenance](#Maintenance)
- [Try your first PAMI program](#try-your-first-PAMI-program)
- [Evaluation](#evaluation)
- [Reading Material](#Reading-Material)
- [License](#License)
- [Documentation](#Documentation)
- [Background](#Background)
- [Getting Help](#Getting-Help)
- [Discussion and Development](#Discussion-and-Development)
- [Contribution to PAMI](#Contribution-to-PAMI)
- [Tutorials](#tutorials)
- [Association rule mining](#0-association-rule-mining)
- [Mining transactional databases](#1-pattern-mining-in-binary-transactional-databases)
- [Mining temporal databases](#2-pattern-mining-in-binary-temporal-databases)
- [Mining spatiotemporal databases](#3-mining-patterns-from-binary-geo-referenced-or-spatiotemporal-databases)
- [Mining utility databases](#4-mining-patterns-from-utility-or-non-binary-databases)
- [Mining fuzzy databases](#5-mining--patterns-from-fuzzy-transactionaltemporalgeo-referenced-databases)
- [Mining uncertain databases](#6-mining-patterns-from-uncertain-transactionaltemporalgeo-referenced-databases)
- [Mining sequence databases](#7-mining-patterns-from-sequence-databases)
- [Mining multiple timeseries](#8-mining-patterns-from-multiple-timeseries-databases)
- [Mining streams](#9-mining-interesting-patterns-from-streams)
- [Mining character sequences](#10-mining-patterns-from-contiguous-character-sequences-eg-dna-genome-and-game-sequences)
- [Mining graphs](#11-mining-patterns-from-graphs)
- [Additional features](#12-additional-features)
- [Synthetic data generator](#121-creation-of-synthetic-databases)
- [Dataframes to databases](#122-converting-a-dataframe-into-a-specific-database-type)
- [Gathering database statistics](#123-gathering-the-statistical-details-of-a-database)
- [Real-World Case Studies](#real-world-case-studies)***
# IntroductionPAttern MIning (PAMI) is a Python library containing several algorithms to discover user interest-based patterns in a wide-spectrum of datasets across multiple computing platforms. Useful links to utilize the services of this library were provided below:
1. Youtube tutorial https://www.youtube.com/playlist?list=PLKP768gjVJmDer6MajaLbwtfC9ULVuaCZ
2. Tutorials (Notebooks) https://github.com/UdayLab/PAMI/tree/main/notebooks
3. User manual https://udaylab.github.io/PAMI/manuals/index.html4. Coders manual https://udaylab.github.io/PAMI/codersManual/index.html
5. Code documentation https://pami-1.readthedocs.io
6. Datasets https://u-aizu.ac.jp/~udayrage/datasets.html
7. Discussions on PAMI usage https://github.com/UdayLab/PAMI/discussions
8. Report issues https://github.com/UdayLab/PAMI/issues
***
# Flow Chart of Developing Algorithms in PAMI
***
# Inputs and Outputs of an Algorithm in PAMI
***
# Recent Updates- **Version 2024.07.02:**
In this latest version, the following updates have been made:
- Included one new algorithms, **PrefixSpan**, for Sequential Pattern.
- Optimized the following pattern mining algorithms: **PFPGrowth, PFECLAT, GPFgrowth and PPF_DFS**.
- Test cases are implemented for the following algorithms, **Contiguous Frequent patterns, Correlated Frequent Patterns, Coverage Frequent Patterns, Fuzzy Correlated Frequent Patterns, Fuzzy Frequent Patterns, Fuzzy Georeferenced Patterns, Georeferenced Frequent Patterns, Periodic Frequent Patterns, Partial Periodic Frequent Patterns, HighUtility Frequent Patterns, HighUtility Patterns, HighUtility Georeferenced Frequent Patterns, Frequent Patterns, Multiple Minimum Frequent Patterns, Periodic Frequent Patterns, Recurring Patterns, Sequential Patterns, Uncertain Frequent Patterns, Weighted Uncertain Frequent Patterns**.
- The algorithms mentioned below are automatically tested, **Frequent Patterns, Correlated Frequent Patterns, Contiguous Frequent patterns, Coverage Frequent Patterns, Recurring Patterns, Sequential Patterns**.Total number of algorithms: 89
***
# Features- ✅ Tested to the best of our possibility
- 🔋 Highly optimized to our best effort, light-weight, and energy-efficient
- 👀 Proper code documentation
- 🍼 Ample examples of using various algorithms at [./notebooks](https://github.com/UdayLab/PAMI/tree/main/notebooks) folder
- 🤖 Works with AI libraries such as TensorFlow, PyTorch, and sklearn.
- ⚡️ Supports Cuda and PySpark
- 🖥️ Operating System Independence
- 🔬 Knowledge discovery in static data and streams
- 🐎 Snappy
- 🐻 Ease of use***
# Maintenance
__Installation__
1. Installing basic pami package (recommended)pip install pami
2. Installing pami package in a GPU machine that supports CUDA
pip install 'pami[gpu]'
3. Installing pami package in a distributed network environment supporting Spark
pip install 'pami[spark]'
4. Installing pami package for developing purpose
pip install 'pami[dev]'
5. Installing complete Library of pami
pip install 'pami[all]'
__Upgradation__
pip install --upgrade pami
__Uninstallation__
pip uninstall pami
__Information__
pip show pami
***
# *Try your first PAMI program*```shell
$ python
``````python
# first import pami
from PAMI.frequentPattern.basic import FPGrowth as alg
fileURL = "https://u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv"
minSup=300
obj = alg.FPGrowth(iFile=fileURL, minSup=minSup, sep='\t')
#obj.mine() #deprecated
obj.mine()
obj.save('frequentPatternsAtMinSupCount300.txt')
frequentPatternsDF= obj.getPatternsAsDataFrame()
print('Total No of patterns: ' + str(len(frequentPatternsDF))) #print the total number of patterns
print('Runtime: ' + str(obj.getRuntime())) #measure the runtime
print('Memory (RSS): ' + str(obj.getMemoryRSS()))
print('Memory (USS): ' + str(obj.getMemoryUSS()))
``````
Output:
Frequent patterns were generated successfully using frequentPatternGrowth algorithm
Total No of patterns: 4540
Runtime: 8.749667644500732
Memory (RSS): 522911744
Memory (USS): 475353088
```***
# Evaluation:
1. we compared three different Python libraries such as PAMI, mlxtend and efficient-apriori for Apriori.
2. (Transactional_T10I4D100K.csv)is a transactional database downloaded from PAMI and
used as an input file for all libraries.
3. Minimum support values and seperator are also same.* The performance of the **Apriori algorithm** is shown in the graphical results below:
1. Comparing the **Patterns Generated** by different Python libraries for the Apriori algorithm:
![]()
2. Evaluating the **Runtime** of the Apriori algorithm across different Python libraries:
3. Comparing the **Memory Consumption** of the Apriori algorithm across different Python libraries:
For more information, we have uploaded the evaluation file in two formats:
- One **ipynb** file format, please check it here. [Evaluation File ipynb](https://github.com/UdayLab/PAMI/blob/main/notebooks/Evaluation-neverDelete.ipynb)
- Two **pdf** file format, check here. [Evaluation File Pdf](https://github.com/UdayLab/PAMI/blob/main/notebooks/evaluation.pdf)***
# Reading MaterialFor more examples, refer this YouTube link [YouTube](https://www.youtube.com/playlist?list=PLKP768gjVJmDer6MajaLbwtfC9ULVuaCZ)
***
# License[](https://github.com/UdayLab/PAMI/blob/main/LICENSE)
***# Documentation
The official documentation is hosted on [PAMI](https://pami-1.readthedocs.io).
***# Background
The idea and motivation to develop PAMI was from [Kitsuregawa Lab](https://www.tkl.iis.u-tokyo.ac.jp/new/resources?lang=en) at the University of Tokyo. Work on ``PAMI`` started at [University of Aizu](https://u-aizu.ac.jp/en/) in 2020 and
has been under active development since then.***
# Getting HelpFor any queries, the best place to go to is Github Issues [GithubIssues](https://github.com/orgs/UdayLab/discussions/categories/q-a).
***
# Discussion and DevelopmentIn our GitHub repository, the primary platform for discussing development-related matters is the university lab. We encourage our team members and contributors to utilize this platform for a wide range of discussions, including bug reports, feature requests, design decisions, and implementation details.
***
# Contribution to PAMIWe invite and encourage all community members to contribute, report bugs, fix bugs, enhance documentation, propose improvements, and share their creative ideas.
***
# Tutorials
### 0. Association Rule Mining| Basic |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Confidence|
| Lift|
| Leverage|
### 1. Pattern mining in binary transactional databases
#### 1.1. Frequent pattern mining: [Sample](https://udaylab.github.io/PAMI/frequentPatternMining.html)
| Basic | Closed | Maximal | Top-k | CUDA | pyspark |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Apriori| CHARM
| maxFP-growth
| FAE
| cudaAprioriGCT | parallelApriori
|
| FP-growth| | | | cudaAprioriTID | parallelFPGrowth
|
| ECLAT| | | | cudaEclatGCT | parallelECLAT
|
| ECLAT-bitSet| | | | | |
| ECLAT-diffset| | | | |
#### 1.2. Relative frequent pattern mining: [Sample](https://udaylab.github.io/PAMI/relativeFrequentPatternMining.html)
| Basic |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RSFP-growth|
#### 1.3. Frequent pattern with multiple minimum support: [Sample](https://udaylab.github.io/PAMI/multipleMinSupFrequentPatternMining.html)
| Basic |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CFPGrowth|
| CFPGrowth++|
#### 1.4. Correlated pattern mining: [Sample](https://udaylab.github.io/PAMI/correlatePatternMining.html)
| Basic |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CoMine|
| CoMine++|
#### 1.5. Fault-tolerant frequent pattern mining (under development)
| Basic |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FTApriori|
| FTFPGrowth (under development)|
#### 1.6. Coverage pattern mining (under development)
| Basic |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CMine|
| CMine++|
### 2. Pattern mining in binary temporal databases
#### 2.1. Periodic-frequent pattern mining: [Sample](https://udaylab.github.io/PAMI/periodicFrequentPatternMining.html)
| Basic | Closed | Maximal | Top-K |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PFP-growth| CPFP
| maxPF-growth
| kPFPMiner
|
| PFP-growth++| | Topk-PFP
|
| PS-growth| | |
| PFP-ECLAT| | |
| PFPM-Compliments| | |
#### 2.2. Local periodic pattern mining: [Sample](https://udaylab.github.io/PAMI/localPeriodicPatternMining.html)
| Basic |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LPPGrowth (under development)|
| LPPMBreadth (under development)|
| LPPMDepth (under development)|
#### 2.3. Partial periodic-frequent pattern mining: [Sample](https://udaylab.github.io/PAMI/partialPeriodicFrequentPattern.html)
| Basic |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPF-growth|
| PPF-DFS|
| GPPF-DFS|
#### 2.4. Partial periodic pattern mining: [Sample](https://udaylab.github.io/PAMI/partialPeriodicPatternMining.html)
| Basic | Closed | Maximal | topK | CUDA |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3P-growth| 3P-close
| max3P-growth
| topK-3P growth
| cuGPPMiner (under development)
| | | | |
| 3P-ECLAT| | | | gPPMiner (under development)
|
| G3P-Growth| | | | |
#### 2.5. Periodic correlated pattern mining: [Sample](https://udaylab.github.io/PAMI/periodicCorrelatedPatternMining.html)
| Basic |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPCP-growth|
#### 2.6. Stable periodic pattern mining: [Sample](https://udaylab.github.io/PAMI/stablePeriodicPatterns.html)
| Basic | TopK |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| SPP-growth| TSPIN
|
| SPP-ECLAT| |
#### 2.7. Recurring pattern mining: [Sample](https://udaylab.github.io/PAMI/RecurringPatterns.html)
| Basic |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RPgrowth|
### 3. Mining patterns from binary Geo-referenced (or spatiotemporal) databases
#### 3.1. Geo-referenced frequent pattern mining: [Sample](https://udaylab.github.io/PAMI/frequentSpatialPatternMining.html)
| Basic |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| spatialECLAT|
| FSP-growth|
#### 3.2. Geo-referenced periodic frequent pattern mining: [Sample](https://udaylab.github.io/PAMI/periodicFrequentSpatial.html)
| Basic |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GPFPMiner|
| PFS-ECLAT|
| ST-ECLAT|
#### 3.3. Geo-referenced partial periodic pattern mining:[Sample](https://udaylab.github.io/PAMI/partialPeriodicSpatialPatternMining.html)
| Basic |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STECLAT|
### 4. Mining patterns from Utility (or non-binary) databases
#### 4.1. High utility pattern mining: [Sample](https://udaylab.github.io/PAMI/highUtilityPatternMining.html)
| Basic |
|----------|
| EFIM|
| HMiner|
| UPGrowth|
#### 4.2. High utility frequent pattern mining: [Sample](https://udaylab.github.io/PAMI/highUtiltiyFrequentPatternMining.html)
| Basic |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HUFIM|
#### 4.3. High utility geo-referenced frequent pattern mining: [Sample](https://udaylab.github.io/PAMI/highUtilitySpatialPatternMining.html)
| Basic |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHUFIM|
#### 4.4. High utility spatial pattern mining: [Sample](https://udaylab.github.io/PAMI/highUtilitySpatialPatternMining.html)
| Basic | topk |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HDSHIM| TKSHUIM
|
| SHUIM|
#### 4.5. Relative High utility pattern mining: [Sample](https://github.com/UdayLab/PAMI/blob/main/sampleManuals/mainManuals/relativeUtility.html)
| Basic |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RHUIM|
#### 4.6. Weighted frequent pattern mining: [Sample](https://udaylab.github.io/PAMI/weightedFrequentPattern.html)
| Basic |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WFIM|
#### 4.7. Weighted frequent regular pattern mining: [Sample](https://udaylab.github.io/PAMI/weightedFrequentRegularPatterns.html)
| Basic |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WFRIMiner|
#### 4.8. Weighted frequent neighbourhood pattern mining: [Sample](https://github.com/UdayLab/PAMI/blob/main/docs/weightedSpatialFrequentPattern.html)
| Basic |
|-------------|
| SSWFPGrowth |### 5. Mining patterns from fuzzy transactional/temporal/geo-referenced databases
#### 5.1. Fuzzy Frequent pattern mining: [Sample](https://github.com/UdayLab/PAMI/fuzzyFrequentPatternMining.html)| Basic |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FFI-Miner|
#### 5.2. Fuzzy correlated pattern mining: [Sample](https://udaylab.github.io/PAMI/fuzzyCorrelatedPatternMining.html)
| Basic |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FCP-growth|
#### 5.3. Fuzzy geo-referenced frequent pattern mining: [Sample](https://github.com/UdayLab/PAMI/fuzzyFrequentSpatialPatternMining.html)
| Basic |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FFSP-Miner|
#### 5.4. Fuzzy periodic frequent pattern mining: [Sample](https://github.com/UdayLab/PAMI/fuzzyPeriodicFrequentPatternMining.html)
| Basic |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FPFP-Miner|
#### 5.5. Fuzzy geo-referenced periodic frequent pattern mining: [Sample](https://github.com/UdayLab/PAMI/fuzzySpatialPeriodicFrequentPatternMining.html)
| Basic |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FGPFP-Miner (under development)|
### 6. Mining patterns from uncertain transactional/temporal/geo-referenced databases
#### 6.1. Uncertain frequent pattern mining: [Sample](https://udaylab.github.io/PAMI/uncertainFrequentPatternMining.html)
| Basic | top-k |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| PUF| TUFP |
| TubeP| |
| TubeS| |
| UVEclat | |#### 6.2. Uncertain periodic frequent pattern mining: [Sample](https://udaylab.github.io/PAMI/uncertainPeriodicFrequentPatternMining.html)
| Basic |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UPFP-growth|
| UPFP-growth++|
#### 6.3. Uncertain Weighted frequent pattern mining: [Sample](https://udaylab.github.io/PAMI/weightedUncertainFrequentPatterns.html)
| Basic |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WUFIM|
### 7. Mining patterns from sequence databases
#### 7.1. Sequence frequent pattern mining: [Sample](https://github.com/UdayLab/PAMI/blob/main/docs/weightedSpatialFrequentPattern.html)
| Basic |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SPADE|
| PrefixSpan|
#### 7.2. Geo-referenced Frequent Sequence Pattern mining
| Basic |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GFSP-Miner (under development)|
### 8. Mining patterns from multiple timeseries databases
#### 8.1. Partial periodic pattern mining (under development)
| Basic |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PP-Growth (under development)|
## 9. Mining interesting patterns from Streams
1. Frequent pattern mining
| Basic |
|---------------|
| to be written |2. High utility pattern mining
| Basic |
|-------|
| HUPMS |## 10. Mining patterns from contiguous character sequences (E.g., DNA, Genome, and Game sequences)
#### 10.1. Contiguous Frequent Patterns
| Basic |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PositionMining|
## 11. Mining patterns from Graphs
#### 11.1. Frequent sub-graph mining
| Basic | topk |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gspan| TKG
|
#### 11.2. Graph transactional coverage pattern mining
| Basic |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GTCP|
## 12. Additional Features
#### 12.1. Creation of synthetic databases
| Database type |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transactional database| |
| Temporal database|
| Utility database (coming soon) |
| spatio-transactional database (coming soon) |
| spatio-temporal database (coming soon) |
| fuzzy transactional database (coming soon) |
| fuzzy temporal database (coming soon) |
| Sequence database generator (coming soon) |#### 12.2. Converting a dataframe into a specific database type
| Approaches |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dense dataframe to databases|
| Sparse dataframe to databases (coming soon) |#### 12.3. Gathering the statistical details of a database
| Approaches |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transactional database|
| Temporal database|
| Utility database (coming soon) |#### 12.4. Convertors
| Approaches |
|----------------------------|
| Subgraphs2FlatTransactions |
| CSV2Parquet |
| CSV2BitInteger |
| CSV2Integer |#### 12.4. Generating Latex code for the experimental results
| Approaches |
|--------------------------|
| Latex code (coming soon) |***
# Real World Case Studies
[Go to Top](#table-of-contents)