Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/uezo/vsslite

A vector similarity search engine for humans🥳
https://github.com/uezo/vsslite

chatgpt chromadb langchain sqlite vector-search vector-similarity-search

Last synced: 3 months ago
JSON representation

A vector similarity search engine for humans🥳

Awesome Lists containing this project

README

        

# VSSLite

A vector similarity search engine for humans🥳

# 🎁 Install

```sh
$ pip install vsslite
```

# ✨ Features

VSSLite provides a user-friendly interface for langchain and sqlite-vss.

## 🧩 Start API server

```sh
$ export OPENAI_APIKEY="YOUR_API_KEY"
$ python -m vsslite
```

Or

```python
import uvicorn
from vsslite import LangChainVSSLiteServer

app = LangChainVSSLiteServer(YOUR_API_KEY).app
uvicorn.run(app, host="127.0.0.1", port=8000)
```

Go http://127.0.0.1:8000/docs to know the details and try it out.

## 🔍 Search

```python
from vsslite import LangChainVSSLiteClient

# Initialize
vss = LangChainVSSLiteClient()

# Add data with embeddings
vss.add("The difference between eel and conger eel is that eel is more expensive.")
vss.add("Red pandas are smaller than pandas, but when it comes to cuteness, there is no \"lesser\" about them.")
vss.add("There is no difference between \"Ohagi\" and \"Botamochi\" themselves; they are used interchangeably depending on the season.")

# Search
print(vss.search("fish", count=1))
print(vss.search("animal", count=1))
print(vss.search("food", count=1))
```

Now you can get these search results.

```bash
$ python run.py

[{'page_content': 'The difference between eel and conger eel is that eel is more expensive.', 'metadata': {'source': 'inline'}}]
[{'page_content': 'Red pandas are smaller than pandas, but when it comes to cuteness, there is no "lesser" about them.', 'metadata': {'source': 'inline'}}]
[{'page_content': 'There is no difference between "Ohagi" and "Botamochi" themselves; they are used interchangeably depending on the season.', 'metadata': {'source': 'inline'}}]
```

## 🔧 Data management (Add, Get, Update, Delete)

Helps CRUD.

```python
# Add
id = vss.add("The difference between eel and conger eel is that eel is more expensive.")[0]
# Get
vss.get(id)
# Update
vss.update(id, "The difference between eel and conger eel is that eel is more expensive. Una-jiro is cheaper than both of them.")
# Delete
vss.delete(id)
# Delete all
vss.delete_all()
```

Upload data. Accept Text, PDF, CSV and JSON for now.

```python
vss.upload("path/to/data.json")
```

## 🍻 Asynchronous

Use async methods when you use VSSLite in server apps.

```python
await vss.aadd("~~~")
await vss.aupdate(id, "~~~")
await vss.aget(id)
await vss.adelete(id)
await vss.aupdate_all()
await vss.asearch("~~~")
await vss.aupload("~~~")
```

## 🧇 Namespace

VSSLite supports namespaces for dividing the set of documents to search or update.

```python
vss = LangChainVSSLiteClient()

# Search product documents
vss.search("What is the difference between super size and ultra size?", namespace="product")
# Search company documents
vss.search("Who is the CTO of Unagiken?", namespace="company")
```

# 🌐 Web UI

You can quickly launch a Q&A web service based on documents 🚅

## Install dependency

```sh
$ pip install streamlit
$ pip install streamlit-chat
```

## Make a script

This is an example for OpenAI terms of use (upload terms of use to VSSServer with namespace `openai`).
Save this script as `runui.py`.

```python
import asyncio
from vsslite.chat import (
ChatUI,
VSSQAFunction
)

# Setup QA function
openai_qa_func = VSSQAFunction(
name="get_openai_terms_of_use",
description="Get information about terms of use of OpenAI services including ChatGPT.",
parameters={"type": "object", "properties": {}},
namespace="openai",
# answer_lang="Japanese", # <- Uncomment if you want to get answer in Japanese
# is_always_on=True, # <- Uncomment if you want to always fire this function
verbose=True
)

# Start app
chatui = ChatUI(temperature=0.5, functions=[openai_qa_func])
asyncio.run(chatui.start())
```

## Start UI

```sh
$ streamlit run runui.py
```

See https://docs.streamlit.io to know more about Streamlit.

# 💬 LINE Bot

You can quickly launch a LINE Bot based on documents 🛫

## Install dependency

```sh
$ pip install aiohttp line-bot-sdk
```

## Make a script

This is an example for OpenAI terms of use (upload terms of use to VSSServer with namespace `openai`).
Save this script as `line.py`.

```python
import os
from vsslite.chatgpt_processor import VSSQAFunction
from vsslite.line import LineBotServer

# Setup QA function(s)
from vsslite.chatgpt_processor import VSSQAFunction
openai_qa_func = VSSQAFunction(
name="get_openai_terms_of_use",
description="Get information about terms of use of OpenAI services including ChatGPT.",
parameters={"type": "object", "properties": {}},
vss_url=os.getenv("VSS_URL") or "http://127.0.0.1:8000",
namespace="openai",
# answer_lang="Japanese", # <- Uncomment if you want to get answer in Japanese
# is_always_on=True, # <- Uncomment if you want to always fire this function
verbose=True
)

app = LineBotServer(
channel_access_token=YOUR_CHANNEL_ACCESS_TOKEN,
channel_secret=YOUR_CHANNEL_SECRET,
endpoint_path="/linebot", # <- Set "https://your_domain/linebot" to webhook url at LINE Developers
functions=[openai_qa_func]
).app
```

## Start LINE Bot Webhook Server

```sh
$ uvicorn line:app --host 0.0.0.0 --port 8002
```

Set `https://your_domain/linebot`` to webhook url at LINE Developers.

# 🐳 Docker

If you want to start VSSLite API with chat console, use `docker-compose.yml` in examples.

Set your OpenAI API Key in vsslite.env and execute the command below:

```sh
$ docker-compose -p vsslite --env-file vsslite.env up -d --build
```

Or, use Dockerfile to start each service separately.

```sh
$ docker build -t vsslite-api -f Dockerfile.api .
$ docker run --name vsslite-api --mount type=bind,source="$(pwd)"/vectorstore,target=/app/vectorstore -d -p 8000:8000 -e OPENAI_API_KEY=$OPENAI_API_KEY vsslite-api:latest
```
```sh
$ docker build -t vsslite-chat -f Dockerfile.chat .
$ docker run --name vsslite-chat -d -p 8001:8000 -e OPENAI_API_KEY=$OPENAI_API_KEY vsslite-chat:latest
```

# 🌊 Using Azure OpenAI Service

VSSLite supports Azure OpenAI Service👍

## API Server

Use `OpenAIEmbeddings` configured for Azure.

```python
from langchain.embeddings import OpenAIEmbeddings
azure_embeddings = OpenAIEmbeddings(
openai_api_type="azure",
openai_api_base="https://your-endpoint.openai.azure.com/",
openai_api_version="2023-08-01-preview",
deployment="your-embeddings-deployment-name"
)

app = LangChainVSSLiteServer(
apikey=YOUR_API_KEY or os.getenv("OPENAI_API_KEY"),
persist_directory="./vectorstore",
chunk_size=500,
chunk_overlap=0,
embedding_function=azure_embeddings
).app
```

## Chat UI

Create `ChatUI` with Azure OpenAI Service configurations.

```python
chatui = ChatUI(
apikey=YOUR_API_KEY or os.getenv("OPENAI_API_KEY"),
temperature=0.5,
functions=[openai_qa_func],
# Config for Azure OpenAI Service
api_type="azure",
api_base="https://your-endpoint.openai.azure.com/",
api_version="2023-08-01-preview",
engine="your-embeddings-deployment-name"
)
```

See also the [examples](https://github.com/uezo/vsslite/tree/main/examples).

# 🍪 Classic version (based on SQLite)

See [v0.3.0 README](https://github.com/uezo/vsslite/blob/6cee7e0421b893ed9e16fba0508e025270e2550a/README.md)

# 🥰 Special thanks

- sqlite-vss: https://github.com/asg017/sqlite-vss
- https://note.com/mahlab/n/n5d59b19be573
- https://qiita.com/Hidetoshi_Kawaguchi/items/f84f7a43d5d1c15a5a17
- https://zenn.dev/koron/articles/8925963f432361