Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ulissigroup/finetuna
Active Learning for Machine Learning Potentials
https://github.com/ulissigroup/finetuna
Last synced: 3 months ago
JSON representation
Active Learning for Machine Learning Potentials
- Host: GitHub
- URL: https://github.com/ulissigroup/finetuna
- Owner: ulissigroup
- License: mit
- Created: 2020-09-22T14:39:52.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2024-05-15T17:26:24.000Z (6 months ago)
- Last Synced: 2024-05-16T05:51:01.672Z (6 months ago)
- Language: Python
- Size: 8.02 MB
- Stars: 41
- Watchers: 3
- Forks: 11
- Open Issues: 9
-
Metadata Files:
- Readme: README.md
- License: LICENSE.md
Awesome Lists containing this project
- best-of-atomistic-machine-learning - GitHub - 25% open · ⏱️ 15.05.2024): (Active learning)
README
[![Lint](https://github.com/ulissigroup/finetuna/actions/workflows/black.yml/badge.svg)](https://github.com/ulissigroup/finetuna/actions/workflows/black.yml)
[![Test](https://github.com/ulissigroup/finetuna/actions/workflows/unittests.yml/badge.svg)](https://github.com/ulissigroup/finetuna/actions/workflows/unittests.yml)
## *FINETUNA*: Fine-Tuning Accelerated Molecular Simulations
Are you doing structural optimizations with DFT or other electronic structure codes?? Try :monocle_face::fish: FINETUNA for accurate but 90% faster relaxation!FINETUNA accelerates atomistic simulations by fine-tuning a pre-trained graph model in an active learning framework.
Installation is easy:
```
conda env create -f env.cpu.yml
conda activate finetuna
cd finetuna
pip install -e .
git clone https://github.com/Open-Catalyst-Project/ocp.git
cd ocp
pip install -e .
pip install git+https://github.com/ulissigroup/vasp-interactive.git
```All pre-trained machine learning model checkpoint can be found [here](https://github.com/Open-Catalyst-Project/ocp/blob/main/MODELS.md). We recommend to download the GemNet-dT all model. [click here to download](https://dl.fbaipublicfiles.com/opencatalystproject/models/2021_08/s2ef/gemnet_t_direct_h512_all.pt).
You are all set! Now in your VASP input folder, run the calculation by: `finetuna_wrap.py -c /path/to/the/checkpoint`.
### Usage
If you have an ASE atoms object, see example [1](https://github.com/ulissigroup/finetuna/blob/main/examples/online_al/online_al_example.py) and [2](https://github.com/ulissigroup/finetuna/blob/main/examples/beef/online_al_beef_example.py).
If you have VASP input files (INCAR, KPOINTS, POTCAR, and POSCAR), see example [3](https://github.com/ulissigroup/finetuna/tree/main/finetuna/vasp_wrapper).