Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/una-dinosauria/human-motion-prediction

Simple baselines and RNNs for predicting human motion in tensorflow. Presented at CVPR 17.
https://github.com/una-dinosauria/human-motion-prediction

computer-vision cvpr-2017 tensorflow

Last synced: 14 days ago
JSON representation

Simple baselines and RNNs for predicting human motion in tensorflow. Presented at CVPR 17.

Awesome Lists containing this project

README

        

## human-motion-prediction

This is the code for the paper

Julieta Martinez, Michael J. Black, Javier Romero.
_On human motion prediction using recurrent neural networks_. In CVPR 17.

It can be found on arxiv as well: https://arxiv.org/pdf/1705.02445.pdf

The code in this repository was written by [Julieta Martinez](https://github.com/una-dinosauria/) and [Javier Romero](https://github.com/libicocco/).

### Dependencies

* [h5py](https://github.com/h5py/h5py) -- to save samples
* [Tensorflow](https://github.com/tensorflow/tensorflow/) 1.2 or later.

### Get this code and the data

First things first, clone this repo and get the human3.6m dataset on exponential map format.

```bash
git clone https://github.com/una-dinosauria/human-motion-prediction.git
cd human-motion-prediction
mkdir data
cd data
wget http://www.cs.stanford.edu/people/ashesh/h3.6m.zip
unzip h3.6m.zip
rm h3.6m.zip
cd ..
```

### Quick demo and visualization

For a quick demo, you can train for a few iterations and visualize the outputs
of your model.

To train, run
```bash
python src/translate.py --action walking --seq_length_out 25 --iterations 10000
```

To save some samples of the model, run
```bash
python src/translate.py --action walking --seq_length_out 25 --iterations 10000 --sample --load 10000
```

Finally, to visualize the samples run
```bash
python src/forward_kinematics.py
```

This should create a visualization similar to this one





### Running average baselines

To reproduce the running average baseline results from our paper, run

`python src/baselines.py`

### RNN models

To train and reproduce the results of our models, use the following commands

| model | arguments | training time (gtx 1080) | notes |
| --- | --- | --- | --- |
| Sampling-based loss (SA) | `python src/translate.py --action walking --seq_length_out 25` | 45s / 1000 iters | Realistic long-term motion, loss computed over 1 second. |
| Residual (SA) | `python src/translate.py --residual_velocities --action walking` | 35s / 1000 iters | |
| Residual unsup. (MA) | `python src/translate.py --residual_velocities --learning_rate 0.005 --omit_one_hot` | 65s / 1000 iters | |
| Residual sup. (MA) | `python src/translate.py --residual_velocities --learning_rate 0.005` | 65s / 1000 iters | best quantitative.|
| Untied | `python src/translate.py --residual_velocities --learning_rate 0.005 --architecture basic` | 70s / 1000 iters | |

You can substitute the `--action walking` parameter for any action in

```
["directions", "discussion", "eating", "greeting", "phoning",
"posing", "purchases", "sitting", "sittingdown", "smoking",
"takingphoto", "waiting", "walking", "walkingdog", "walkingtogether"]
```

or `--action all` (default) to train on all actions.

The code will log the error in Euler angles for each action to [tensorboard](https://www.tensorflow.org/get_started/summaries_and_tensorboard). You can track the progress during training by typing `tensorboard --logdir experiments` in the terminal and checking the board under http://127.0.1.1:6006/ in your browser (occasionally, tensorboard might pick another url).

### Citing

If you use our code, please cite our work

```
@inproceedings{julieta2017motion,
title={On human motion prediction using recurrent neural networks},
author={Martinez, Julieta and Black, Michael J. and Romero, Javier},
booktitle={CVPR},
year={2017}
}
```

### Other implementations

* [Pytorch](https://github.com/enriccorona/human-motion-prediction-pytorch) by [@enriccorona](https://github.com/enriccorona)

### Acknowledgments

The pre-processed human 3.6m dataset and some of our evaluation code (specially under `src/data_utils.py`) was ported/adapted from [SRNN](https://github.com/asheshjain399/RNNexp/tree/srnn/structural_rnn) by [@asheshjain399](https://github.com/asheshjain399).

### Licence
MIT