Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/undark-lab/swyft
A system for scientific simulation-based inference at scale.
https://github.com/undark-lab/swyft
likelihood-free-inference machine-learning marginal-neural-ratio-estimation neural-ratio-estimation parameter-estimation python pytorch simulation-based-inference truncated-neural-ratio-estimation
Last synced: 3 months ago
JSON representation
A system for scientific simulation-based inference at scale.
- Host: GitHub
- URL: https://github.com/undark-lab/swyft
- Owner: undark-lab
- License: other
- Created: 2020-05-25T21:19:48.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2024-03-30T06:19:33.000Z (10 months ago)
- Last Synced: 2024-05-22T14:31:31.463Z (8 months ago)
- Topics: likelihood-free-inference, machine-learning, marginal-neural-ratio-estimation, neural-ratio-estimation, parameter-estimation, python, pytorch, simulation-based-inference, truncated-neural-ratio-estimation
- Language: Jupyter Notebook
- Homepage:
- Size: 380 MB
- Stars: 152
- Watchers: 11
- Forks: 13
- Open Issues: 16
-
Metadata Files:
- Readme: README.rst
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Authors: AUTHORS
Awesome Lists containing this project
- awesome-neural-sbi - [Code - efficient, simulation-based inference technique for complex data and expensive simulators. (Code Packages and Benchmarks)
README
Swyft
=====.. image:: https://raw.githubusercontent.com/undark-lab/swyft/v0.4.1/docs/source/_static/img/swyft_logo_wide.png
:width: 800
:align: center*Swyft* is a system for scientific simulation-based inference at scale.
.. image:: https://badge.fury.io/py/swyft.svg
:target: https://badge.fury.io/py/swyft
:alt: PyPI version.. .. image:: https://github.com/undark-lab/swyft/actions/workflows/tests.yml/badge.svg
.. :target: https://github.com/undark-lab/swyft/actions
.. :alt: Tests.. .. image:: https://github.com/undark-lab/swyft/actions/workflows/syntax.yml/badge.svg
.. :target: https://github.com/undark-lab/swyft/actions
.. :alt: Syntax.. image:: https://codecov.io/gh/undark-lab/swyft/branch/master/graph/badge.svg?token=E253LRJWWE
:target: https://codecov.io/gh/undark-lab/swyft
:alt: codecov.. .. image:: https://readthedocs.org/projects/swyft/badge/?version=latest
.. :target: https://swyft.readthedocs.io/en/latest/?badge=latest
.. :alt: Documentation Status.. .. image:: https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat
.. :target: https://github.com/undark-lab/swyft/blob/master/CONTRIBUTING.md
.. :alt: Contributions welcome.. .. image:: https://colab.research.google.com/assets/colab-badge.svg
.. :target: https://colab.research.google.com/github/undark-lab/swyft/blob/master/notebooks/Quickstart.ipynb
.. :alt: colab.. image:: https://joss.theoj.org/papers/10.21105/joss.04205/status.svg
:target: https://doi.org/10.21105/joss.04205.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.5752734.svg
:target: https://doi.org/10.5281/zenodo.5752734*Swyft* is the official implementation of Truncated Marginal Neural Ratio Estimation (TMNRE),
a hyper-efficient, simulation-based inference technique for complex data and expensive simulators.Swyft in action
---------------.. image:: https://raw.githubusercontent.com/undark-lab/swyft/v0.4.1/docs/source/_static/img/SBI-curve.gif
:width: 800
:align: center* Swyft makes it convenient to perform Bayesian or Frequentist inference of hundreds, thousands or millions of parameter posteriors by constructing optimal data summaries.
* To this end, Swyft estimates likelihood-to-evidence ratios for arbitrary marginal posteriors; they typically require fewer simulations than the corresponding joint.
* Swyft performs targeted inference by prior truncation, combining simulation efficiency with empirical testability.
* Swyft is based on stochastic simulators, which map parameters stochastically to observational data. Swyft makes it convenient to define such simulators as graphical models.
* In scientific settings, a cost-benefit analysis often favors approximating the posterior marginality; *swyft* provides this functionality.
* The package additionally implements our prior truncation technique, routines to empirically test results by estimating the expected coverage, and a simulator manager with `zarr `_ storage to simplify use with complex simulators.Papers using Swyft/TMNRE
------------------------2021
- “Fast and Credible Likelihood-Free Cosmology with Truncated Marginal Neural Ratio Estimation“ Cole+ https://arxiv.org/abs/2111.08030
2022
- “Estimating the warm dark matter mass from strong lensing images with truncated marginal neural ratio estimation” Anau Montel+, https://arxiv.org/abs/2205.09126
- “SICRET: Supernova Ia Cosmology with truncated marginal neural Ratio EsTimation” Karchev+ https://arxiv.org/abs/2209.06733
- “One never walks alone: the effect of the perturber population on subhalo measurements in strong gravitational lenses” Coogan+ https://arxiv.org/abs/2209.09918
- “Detection is truncation: studying source populations with truncated marginal neural ratio estimation” Anau Montel+ https://arxiv.org/abs/2211.042912023
- “Debiasing Standard Siren Inference of the Hubble Constant with Marginal Neural Ratio Estimation” Gagnon-Hartman+ https://arxiv.org/abs/2301.05241
- “Constraining the X-ray heating and reionization using 21-cm power spectra with Marginal Neural Ratio Estimation” Saxena+ https://arxiv.org/abs/2303.07339
- “Peregrine: Sequential simulation-based inference for gravitational wave signals”, Bhardwaj+ https://arxiv.org/abs/2304.02035
- “Albatross: A scalable simulation-based inference pipeline for analysing stellar streams in the Milky Way”, Alvey+ https://arxiv.org/abs/2304.02032Further information
-------------------* **Documentation & installation**: https://swyft.readthedocs.io/
* **Example usage**: https://swyft.readthedocs.io/en/latest/tutorial-notebooks.html
* **Source code**: https://github.com/undark-lab/swyft
* **Support & discussion**: https://github.com/undark-lab/swyft/discussions
* **Bug reports**: https://github.com/undark-lab/swyft/issues
* **Contributing**: https://swyft.readthedocs.io/en/latest/contributing-link.html
* **Citation**: https://swyft.readthedocs.io/en/latest/citation.html*Swyft* history
---------------* As of v0.4.0, *Swyft* is based on pytorch-lightning, with a completely updated
* `v0.3.2 `_ is the version that was submitted to `JOSS `_.
* `tmnre `_ is the implementation of the paper `Truncated Marginal Neural Ratio Estimation `_.
* `v0.1.2 `_ is the implementation of the paper `Simulation-efficient marginal posterior estimation with swyft: stop wasting your precious time `_.Relevant packages
-----------------* `sbi `_ is a collection of simulation-based inference methods. Unlike *Swyft*, the repository does not include our truncation scheme nor marginal estimation of posteriors.
* `lampe `_ is an implementation of amoritzed simulation-based inference methods aimed at simulation-based inference researchers due to its flexibility.