Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/undin/recommender-system
https://github.com/undin/recommender-system
Last synced: 8 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/undin/recommender-system
- Owner: Undin
- Created: 2016-02-16T21:19:17.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2016-02-17T20:52:52.000Z (over 8 years ago)
- Last Synced: 2024-10-10T18:49:20.163Z (28 days ago)
- Language: Java
- Size: 36.4 MB
- Stars: 0
- Watchers: 3
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Recommender system
* result of recommender system training: https://yadi.sk/d/PvwkEynop2eC9
* sample: https://github.com/Undin/recommender-system/blob/master/src/main/java/com/ifmo/recommendersystem/Main.javaP.S. there aren't some meta-features for `kdd_ipums_la_97-small`, `kdd_ipums_la_98-small`, `kdd_ipums_la_99-small`, `mushroom`,
`pendigits`, `splice`, `sylva_agnostic`, `sylva_prior` (knn and neural meta-features).# Files
* `algorithms.json` - list of used feature subset selection algorithms. Contains short name, full class names and options
* `classifiers.json` - list of used classifier algorithms. Contains short name, full class names and options
* `config.json` - config for recommender system builder
* evaluation configs (such as `evaluationConfig.json`, `fastEvaluationConfig.json` and etc.) - configs with parameters to use recommender system# How to use
* download results and unzip to root of project
* change `DATASETS` to array with paths to your datasets
* run `Main`
* ...
* PROFIT!!! - recommendation will be located in `OUTPUT_DIRECTORY`# todo
create console util