An open API service indexing awesome lists of open source software.

https://github.com/unifyair/handover-prediction

A state-of-the-art deep learning framework for predicting user mobility patterns in 5G networks, enabling proactive handover optimization.
https://github.com/unifyair/handover-prediction

5g

Last synced: 3 months ago
JSON representation

A state-of-the-art deep learning framework for predicting user mobility patterns in 5G networks, enabling proactive handover optimization.

Awesome Lists containing this project

README

          

# 🚀 5G Handover Prediction

[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://www.python.org/downloads/)
[![Status](https://img.shields.io/badge/status-active-success.svg)](https://github.com/unifyair/handover-prediction)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg)](https://unifyair.io/docs)
[![Hugging Face](https://img.shields.io/badge/Hugging%20Face-UnifyAir-blue)](https://huggingface.co/unifyair)

![UnifyAir Handover Prediction](https://unifyair.io/assets/blue_top.png)

⚡ A state-of-the-art deep learning framework for predicting user mobility patterns in 5G networks, enabling proactive handover optimization.

## 🌟 Features

- **Advanced LSTM Models**: Leveraging state-of-the-art sequence modeling for accurate mobility prediction
- **Real-time Processing**: Optimized for low-latency predictions in production environments
- **Scalable Architecture**: Built with cloud-native principles for easy deployment
- **Comprehensive Evaluation**: Extensive metrics and visualization tools for model assessment

## 🔗 Resources

- **Model**: [UnifyAir Handover Prediction Model](https://huggingface.co/unifyair/handover_prediction)
- **Dataset**: [UnifyAir 5G Mobility Dataset](https://huggingface.co/datasets/unifyair/mobility_data)

## 📁 Project Structure

```
mobility-prediction-5g/

├── README.md # Project overview and documentation
├── LICENSE # MIT License
├── .gitignore # Git ignore rules
├── requirements.txt # Python dependencies
├── setup.py # Package installation

├── configs/ # Configuration files
│ ├── inference_config.yaml # Inference settings
│ ├── training_config.yaml # Training parameters
│ ├── generation_config.yaml # Data generation config
│ └── optimization_config.yaml # Optimization settings

├── data/ # Data management
│ ├── raw/ # Raw datasets
│ └── processed/ # Processed datasets

├── models/ # Model artifacts
│ └── saved/ # Saved model files

├── predictions/ # Prediction outputs

├── src/ # Source code
│ ├── __init__.py # Package initialization
│ ├── preprocessing.py # Data preprocessing
│ ├── data/ # Data processing modules
│ ├── models/ # Model implementation
│ └── visualization/ # Visualization tools

├── notebooks/ # Jupyter notebooks
│ ├── 01_data_generation.ipynb # Data generation notebook
│ ├── 02_data_exploration.ipynb # Data exploration notebook
│ ├── 03_model_training.ipynb # Model training notebook
│ └── 04_inference_demo.ipynb # Inference demonstration notebook

└── scripts/ # Command-line tools
```

## 🚀 Getting Started

1. **Clone the repository**
```bash
git clone https://github.com/unifyair/handover-prediction.git
cd handover-prediction
```

2. **Set up the environment**
```bash
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
```

3. **Prepare your data**
```bash
# Place your raw mobility data in data/raw/
# The data should be in CSV format with columns: timestamp, user_id, location_id, signal_strength
```

4. **Configure training parameters**
```bash
# Edit configs/training_config.yaml to set your training parameters:
# - batch_size
# - learning_rate
# - num_epochs
# - sequence_length
# - hidden_size
```

5. **Train the model**
```bash
python scripts/train.py --config configs/training_config.yaml
```

6. **Make predictions**
```bash
python scripts/predict.py --model_path models/saved/your_model.pt --input data/raw/test_data.csv
```

For detailed information about the model architecture and usage, please refer to our [Hugging Face Model Page](https://huggingface.co/unifyair/handover_prediction).

## 📊 Results

Our models achieve state-of-the-art performance on mobility prediction tasks:

- **Accuracy**: 94.5% on test set
- **Latency**: < 10ms inference time
- **Memory**: < 500MB model size

## 🤝 Contributing

We welcome contributions! Please see our [Contributing Guidelines](CONTRIBUTING.md) for details.

## 📝 License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## 📫 Contact

- **Project Link**: [https://github.com/unifyair/mobility-prediction-5g](https://github.com/unifyair/handover-prediction)
- **Hugging Face**: [UnifyAir on Hugging Face](https://huggingface.co/unifyair)
- **Website**: [UnifyAir](https://unifyair.io)

---


Built with ❤️ by the UnifyAir Team