Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/universvm/bacxeption
Deep Learning Template for bacterial image classification in Keras.
https://github.com/universvm/bacxeption
bioinformatics biotechnology deep-learning neural-network
Last synced: 20 days ago
JSON representation
Deep Learning Template for bacterial image classification in Keras.
- Host: GitHub
- URL: https://github.com/universvm/bacxeption
- Owner: universvm
- License: gpl-3.0
- Created: 2018-12-19T15:17:10.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2023-02-02T06:15:19.000Z (almost 2 years ago)
- Last Synced: 2024-05-21T12:09:39.306Z (6 months ago)
- Topics: bioinformatics, biotechnology, deep-learning, neural-network
- Language: Python
- Homepage:
- Size: 9.34 MB
- Stars: 8
- Watchers: 4
- Forks: 2
- Open Issues: 8
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
Deep Learning for bacterial classification
# BacXeption
BacXeption is a Deep Learning template of image segmentation functions and a
Convolutional Neural Network (CNN) built on Keras for bacterial image
classification. It uses the Xception architecture with pre-trained weights (https://arxiv.org/abs/1610.02357).
## Examples## 1. Getting Started
This project requires Python 3.6+
### 1.1 Pre-requisitesInstall the prerequisites with PIP
```
pip install -r requirements.txt
```### 1.2 Running the trained model
1. Place the raw images in `data/test_data/`
2. Run `python main.py`This should output labelled images with a .txt file of the coordinates of
each box in the `output/$DATE_TIME` folder. Example:## 2. Training your own model
### 2.1 Two categories
1. Replace the images in the `data/0/` and `data/1/` with your
images.
2. Run `python train.py`
3. Move the `output/$DATE_TIME/model.json` and `output/$DATE_TIME/model.h5`
in the `model/` folder.
4. Follow the instructions in section 1.2### 2.1 >Two categories
1. Change `NUM_CLASSES` in config.py to the number of classes wanted.
2. Add your data in the `data/` folder. Each category should have a separate
folder name, these must be integers starting from 0 (eg. `0/`,`1/`,`2/` for
3 categories)
3. Follow the instructions in section 2.1## 3. Contributing
Pull requests and suggestions are always welcome.## 4. Additional information
### Authors
Leonardo Castorina - [universVM](https://github.com/universvm)## Acknowledgments
[Dr. Teuta Pilizota](http://pilizotalab.bio.ed.ac.uk) - Proposing the
problem and useful discussions.[Dario Miroli](https://github.com/DarioMiroli) – For introducing me to Keras
and debugging early versions of BacXeption
[François Chollet](https://github.com/fchollet) – Developing Keras and
Xception