Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/unrealcv/synthetic-computer-vision
A list of synthetic dataset and tools for computer vision
https://github.com/unrealcv/synthetic-computer-vision
computer-vision dataset synthetic-images virtual-worlds
Last synced: 12 days ago
JSON representation
A list of synthetic dataset and tools for computer vision
- Host: GitHub
- URL: https://github.com/unrealcv/synthetic-computer-vision
- Owner: unrealcv
- License: mit
- Created: 2016-08-10T19:31:52.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2023-04-15T08:46:28.000Z (over 1 year ago)
- Last Synced: 2024-10-16T13:04:49.474Z (25 days ago)
- Topics: computer-vision, dataset, synthetic-images, virtual-worlds
- Language: Python
- Homepage:
- Size: 132 KB
- Stars: 1,003
- Watchers: 80
- Forks: 180
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Synthetic for Computer Vision
This is a repo for tracking the progress of using synthetic images for computer vision research. If you found any important work is missing or information is not up-to-date, please edit this file directly and make a pull request. Each publication is tagged with a keyword to make it easier to search.
If you find anything missing from this page, please edit this `README.md` file to add it. When adding a new item, you can simply follow the format of existing items. How this document is structured is documented in [`contribute.md`](contribute.md).
**How to use**: Click publication to jump to the paper title, detailed information such as code and project page will be provided together with pdf file.**
## Synthetic image dataset
- [SunCG (Princeton)](https://sscnet.cs.princeton.edu/)
- [Minos](https://minosworld.github.io/)
- [House3d (Facebook)](https://github.com/facebookresearch/House3D)
- [Procedural Human Action Videos (PHAV)](#de2016procedural)
- [SURREAL](#varol2017learning)
- [Virtual KITTI](#gaidon2016virtual)
- [Synthia](#ros2016synthia)
- [Sintel](#butler2012naturalistic), A synthetic dataset for optical flow
- [SceneFlow](#mayer2015large)
- [4D Light Fields](#honauer2016dataset)
- [ICL-NUIM dataset](#handa2014benchmark)
- [Driving in the Matrix](#drivingthematrix)
- [Playing for Benchmarks](http://playing-for-benchmarks.org/overview/)## 3D Model Repository
Realistic 3D models are critical for creating realistic and diverse virtual worlds. Here are research efforts for creating 3D model repositories.
- [ShapeNet](#chang2015shapenet)
- [3dscan](#choi2016large)
- [seeing3Dchairs](#aubry2014seeing)## Tools
- [AIPlayground: UE4 Based Data Ablation tool](#mousavi2020ai), see [project page](https://github.com/MMehdiMousavi/AIP)
- [AirSim (Microsoft)](https://github.com/Microsoft/AirSim)
- [CARLA (Intel)](https://github.com/carla-simulator/carla)
- [Unity ML agents](https://blogs.unity3d.com/2017/09/19/introducing-unity-machine-learning-agents/)
- Render SMPL human bodies on Blender, see [CVPR2017](#varol2017learning)
- Render for CNN, based on Blender, see [ICCV2015](#su2015render)
- [UETorch](https://github.com/facebook/UETorch), based on UE4, see [ICML2016](#lerer2016learning)
- [UnrealCV](https://github.com/unrealcv/unrealcv), based on UE4, see [ArXiv](#qiu2016unrealcv)
- VizDoom, based on Doom, see [ArXiv](#kempka2016vizdoom)
- OpenAI Universe, see [project page](https://universe.openai.com/)
- Blender addon for 4D light field rendering, see [project page](https://github.com/lightfield-analysis/blender-addon)
- Event-Camera Dataset and Simulator see [project page](https://github.com/uzh-rpg/rpg_davis_simulator)
- [NVIDIA Deep learning Dataset Synthesizer (NDDS)](https://github.com/NVIDIA/Dataset_Synthesizer)## Resources
[ECCV 2016 Workshop Virtual/Augmented Reality for Visual Artificial Intelligence (VARVAI) workshop](http://adas.cvc.uab.es/varvai2016/)
[ICCV 2017 Workshop Role of Simulation in Computer Vision](https://www.microsoft.com/en-us/research/event/iccv-2017-role-of-simulation-in-computer-vision/)
[Virtual Reality Meets Physical Reality:
Modelling and Simulating Virtual Humans and Environments
Siggraph Asia 2016 workshop](http://sigvr.org/)[CVPR 2017 Workshop THOR Challenge](http://vuchallenge.org/thor.html)
See also: http://riemenschneider.hayko.at/vision/dataset/index.php?filter=+synthetic
## Misc.
- RealismCNN [github](https://github.com/junyanz/RealismCNN)
- Abnormality Detection in Images(http://paul.rutgers.edu/~babaks/abnormality_detection.html)## Reference
### 2020
- Mousavi, Mehdi and Khanal, Aashis and Estrada, Rolando. "AI Playground: Unreal Engine-based Data Ablation Tool for Deep Learning" International Symposium on Visual Computing (ISVC), 2020.
([pdf](https://arxiv.org/abs/2007.06153))
([project](https://github.com/MMehdiMousavi/AIP))
### 2017
(Total=12)
- Adversarially Tuned Scene Generation
([pdf](https://arxiv.org/pdf/1701.00405.pdf))
- UE4Sim: A Photo-Realistic Simulator for Computer Vision Applications
([pdf](https://arxiv.org/abs/1708.05869))
([project](https://ue4sim.org/))- Playing for Benchmarks
([pdf](http://vladlen.info/papers/playing-for-benchmarks.pdf))- A Self-supervised Learning System for Object Detection using Physics Simulation and Multi-view Pose Estimation
([:octocat:code](https://github.com/cmitash/PHYSIM_6DPose))
([pdf](https://arxiv.org/pdf/1703.03347.pdf))
([project](http://paul.rutgers.edu/~cm1074/PHYSIM.html))
- Procedural Generation of Videos to Train Deep Action Recognition Networks
([pdf](http://openaccess.thecvf.com/content_cvpr_2017/papers/de_Souza_Procedural_Generation_of_CVPR_2017_paper.pdf))
([project](http://adas.cvc.uab.es/phav/))
([citation:8](https://scholar.google.com/scholar?cites=12002008688864745159&as_sdt=2005&sciodt=0,5&hl=en))- Learning from Synthetic Humans
([:octocat:code](https://github.com/gulvarol/surreal))
([pdf](https://arxiv.org/abs/1701.01370))
([project](http://www.di.ens.fr/willow/research/surreal/))
tag: synthetic human
- [Nvidia Issac](http://www.marketwired.com/press-release/nvidia-ushers-new-era-robotics-with-breakthroughs-making-it-easier-build-train-intelligent-2215481.htm)- Configurable, Photorealistic Image Rendering and Ground Truth Synthesis by Sampling Stochastic Grammars Representing Indoor Scenes
- Aerial Informatics and Robotics Platform
([:octocat:code](https://github.com/Microsoft/AirSim))
([pdf](https://www.microsoft.com/en-us/research/wp-content/uploads/2017/02/aerial-informatics-robotics-TR.pdf))
([project](https://www.microsoft.com/en-us/research/project/aerial-informatics-robotics-platform/))
tag: tool- Tobin, Josh, et al. "Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World." arXiv preprint arXiv:1703.06907 (2017). tag: domain
([pdf](https://arxiv.org/pdf/1703.06907.pdf))
- M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, Karl Rosaen,and R. Vasudevan, “Driving in the matrix: Can virtual worlds replace human-generated annotations for real world tasks?,” in IEEE International Conference on Robotics and Automation, pp. 1–8, 2017.
([:octocat:code](https://github.com/umautobots/driving-in-the-matrix))
([pdf](https://arxiv.org/pdf/1610.01983))
([project](https://fcav.engin.umich.edu/sim-dataset/))
([citation:3](https://scholar.google.com/scholar?um=1&ie=UTF-8&lr&cites=2191650018344815319))
- Zheng Z, Zheng L, Yang Y. "Unlabeled samples generated by gan improve the person re-identification baseline in vitro" in Proceedings of IEEE International Conference on Computer Vision, 2017.
([:octocat:code](https://github.com/layumi/Person-reID_GAN))
([pdf](https://arxiv.org/abs/1701.07717))
([citation:48](https://scholar.google.com/scholar?oi=bibs&hl=zh-CN&cites=270746001988088124))
tag: generated images by GAN### 2016
(Total=17)- Sadeghi, Fereshteh, and Sergey Levine. "rl: Real single-image flight without a single real image. arXiv preprint." arXiv preprint arXiv:1611.04201 12 (2016). tag: rl
- Johnson, Justin, et al. "CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning." arXiv preprint arXiv:1612.06890 (2016).
([pdf](https://arxiv.org/abs/1612.06890))- McCormac, John, et al. "SceneNet RGB-D: 5M Photorealistic Images of Synthetic Indoor Trajectories with Ground Truth." arXiv preprint arXiv:1612.05079 (2016).
- de Souza, César Roberto, et al. "Procedural Generation of Videos to Train Deep Action Recognition Networks." arXiv preprint arXiv:1612.00881 (2016).
([pdf](https://arxiv.org/abs/1612.00881))
([project](http://adas.cvc.uab.es/phav/))
tag: synthetic human- Synnaeve, Gabriel, et al. "TorchCraft: a Library for Machine Learning Research on Real-Time Strategy Games." arXiv preprint arXiv:1611.00625 (2016).
([pdf](https://arxiv.org/abs/1611.00625))
([code](https://github.com/TorchCraft/TorchCraft))- Lin, Jenny, et al. "A virtual reality platform for dynamic human-scene interaction." SIGGRAPH ASIA 2016 Virtual Reality meets Physical Reality: Modelling and Simulating Virtual Humans and Environments. ACM, 2016.
([pdf](https://xiaozhuchacha.github.io/projects/siggraphasia16_vrplatform/vrplatform2016siggraphasia.pdf))
([project](https://xiaozhuchacha.github.io/projects/siggraphasia16_vrplatform/index.html))- Mahendran, A., et al. "ResearchDoom and CocoDoom: Learning Computer Vision with Games." arXiv preprint arXiv:1610.02431 (2016).
([pdf](https://arxiv.org/pdf/1610.02431.pdf))
([project](www.robots.ox.ac.uk/~vgg/research/researchdoom/))- The SYNTHIA dataset: A large collection of synthetic images for semantic segmentation of urban scenes. 2016
([pdf](http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Ros_The_SYNTHIA_Dataset_CVPR_2016_paper.html))
([project](http://synthia-dataset.net/))
([citation:4](http://scholar.google.com/scholar?cites=9178628328030932213&as_sdt=2005&sciodt=0,5&hl=en))- Virtual Worlds as Proxy for Multi-Object Tracking Analysis. 2016
([pdf](http://arxiv.org/abs/1605.06457))
([project](http://www.xrce.xerox.com/Research-Development/Computer-Vision/Proxy-Virtual-Worlds))
([citation:5](http://scholar.google.com/scholar?cites=11727455440906017188&as_sdt=2005&sciodt=0,5&hl=en))- Playing for data: Ground truth from computer games. 2016
([pdf](http://link.springer.com/chapter/10.1007/978-3-319-46475-6_7))
([citation:1](http://scholar.google.com/scholar?cites=12822958035144353200&as_sdt=2005&sciodt=0,5&hl=en))- Play and Learn: Using Video Games to Train Computer Vision Models. 2016
([pdf](http://arxiv.org/abs/1608.01745))
([citation:1](http://scholar.google.com/scholar?cites=16081073673799361643&as_sdt=2005&sciodt=0,5&hl=en))- ViZDoom: A Doom-based AI Research Platform for Visual Reinforcement Learning. 2016
([:octocat:code](https://github.com/Marqt/ViZDoom))
([pdf](http://arxiv.org/abs/1605.02097))
([project](http://vizdoom.cs.put.edu.pl/))
([citation:4](http://scholar.google.com/scholar?cites=4101579648300742816&as_sdt=2005&sciodt=0,5&hl=en))- A large dataset of object scans. 2016
([pdf](http://arxiv.org/abs/1602.02481))
([project](http://redwood-data.org/3dscan/))
([citation:6](http://scholar.google.com/scholar?cites=5989950372336055491&as_sdt=2005&sciodt=0,5&hl=en))- UnrealCV: Connecting Computer Vision to Unreal Engine 2016
([:octocat:code](https://github.com/unrealcv/unrealcv))
([project](http://unrealcv.github.io))
([pdf](http://arxiv.org/abs/1609.01326))- Learning Physical Intuition of Block Towers by Example 2016
([:octocat:code](https://github.com/facebook/UETorch))
([pdf](http://arxiv.org/abs/1603.01312))
([citation:12](http://scholar.google.com/scholar?cites=12846348306706460250&as_sdt=2005&sciodt=0,5&hl=en))- Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning 2016
([pdf](http://arxiv.org/abs/1609.05143))- A Dataset and Evaluation Methodology for Depth Estimation on 4D Light Fields. ACCV 2016
([:octocat:code](https://github.com/lightfield-analysis))
([pdf](http://lightfield-analysis.net/benchmark/paper/lightfield_benchmark_accv_2016.pdf))
([project](http://lightfield-analysis.net/))
([citation](https://scholar.google.de/scholar?cluster=3369030498099069181&hl=en&as_sdt=0,5))### 2015
(Total=3)- A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation. 2015
([pdf](http://arxiv.org/abs/1512.02134))
([citation:9](http://scholar.google.com/scholar?cites=16431759299155441580&as_sdt=2005&sciodt=0,5&hl=en))- Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views. 2015
([:octocat:code](https://github.com/ShapeNet/RenderForCNN))
([pdf](http://www.cv-foundation.org/openaccess/content_iccv_2015/html/Su_Render_for_CNN_ICCV_2015_paper.html))
([citation:33](http://scholar.google.com/scholar?cites=1209553997502402606&as_sdt=2005&sciodt=0,5&hl=en))- Shapenet: An information-rich 3d model repository. 2015
([pdf](http://arxiv.org/abs/1512.03012))
([project](http://shapenet.cs.stanford.edu/))
([citation:27](http://scholar.google.com/scholar?cites=1341601736562194564&as_sdt=2005&sciodt=0,5&hl=en))### 2014
(Total=2)- Virtual and real world adaptation for pedestrian detection. 2014
([pdf](http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6587038))
([citation:46](http://scholar.google.com/scholar?cites=2637402509859183337&as_sdt=2005&sciodt=0,5&hl=en))- Seeing 3d chairs: exemplar part-based 2d-3d alignment using a large dataset of cad models. 2014
([:octocat:code](https://github.com/dimatura/seeing3d))
([pdf](http://www.cv-foundation.org/openaccess/content_cvpr_2014/html/Aubry_Seeing_3D_Chairs_2014_CVPR_paper.html))
([project](http://www.di.ens.fr/willow/research/seeing3Dchairs/))
([citation:110](http://scholar.google.com/scholar?cites=18030645502969108287&as_sdt=2005&sciodt=0,5&hl=en))
- Handa, Ankur, Thomas Whelan, John McDonald, and Andrew J. Davison. "A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM." In Robotics and automation (ICRA), 2014 IEEE international conference on, pp. 1524-1531. IEEE, 2014.
([project](https://www.doc.ic.ac.uk/~ahanda/VaFRIC/iclnuim.html))### 2013
(Total=1)- Detailed 3d representations for object recognition and modeling. 2013
([pdf](http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6516504))
([citation:67](http://scholar.google.com/scholar?cites=6595507135181144034&as_sdt=2005&sciodt=0,5&hl=en))### 2012
(Total=1)- A naturalistic open source movie for optical flow evaluation. 2012
([pdf](http://link.springer.com/chapter/10.1007/978-3-642-33783-3_44))
([project](http://sintel.is.tue.mpg.de/))
([citation:227](http://scholar.google.com/scholar?cites=15124407213489971559&as_sdt=20000005&sciodt=0,21&hl=en))### 2010
(Total=1)- Learning appearance in virtual scenarios for pedestrian detection. 2010
([pdf](http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5540218))
([citation:79](http://scholar.google.com/scholar?cites=17243485674852907889&as_sdt=2005&sciodt=0,5&hl=en))### 2007
(Total=1)- Ovvv: Using virtual worlds to design and evaluate surveillance systems. 2007
([pdf](http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4270516))
([citation:58](http://scholar.google.com/scholar?cites=3459961090644684583&as_sdt=2005&sciodt=0,5&hl=en))