Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/unum-cloud/uform

Pocket-Sized Multimodal AI for content understanding and generation across multilingual texts, images, and 🔜 video, up to 5x faster than OpenAI CLIP and LLaVA 🖼️ & 🖋️
https://github.com/unum-cloud/uform

bert clip clustering contrastive-learning cross-attention huggingface-transformers image-search language-vision llava multi-lingual multimodal neural-network openai openclip pretrained-models pytorch representation-learning semantic-search transformer vector-search

Last synced: 20 days ago
JSON representation

Pocket-Sized Multimodal AI for content understanding and generation across multilingual texts, images, and 🔜 video, up to 5x faster than OpenAI CLIP and LLaVA 🖼️ & 🖋️

Awesome Lists containing this project

README

        

UForm



Pocket-Sized Multimodal AI

For Content Understanding and Generation




Discord
     
LinkedIn
     
Twitter
     
Blog
     
GitHub


Multimodal Embeddings from 64 to 768 Dimensions • 1B Parameter Chat


Short Texts • Images • 🔜 Video Clips • 🔜 Long Documents


ONNX • CoreML • PyTorch


Python

JavaScript

Swift

---

![UForm Chat Preview](https://github.com/ashvardanian/usearch-images/blob/main/assets/uform-gen-preview.jpg?raw=true)

Welcome to UForm, a __multimodal__ AI library that's as versatile as it is efficient.
UForm [tiny embedding models](#encoder) will help you understand and search visual and textual content across various languages.
UForm [small generative models](#decoder), on the other hand, don't only support conversational and chat use-cases, but are great for fast image captioning and Visual Question Answering (VQA).
With compact __custom pre-trained transformer models__, this can run anywhere from your server farm down to your smartphone.

## Features

- __Tiny Embeddings__: 64-dimensional [Matryoshka][matryoshka]-style embeddings for extremely fast [search][usearch].
- __Throughput__: Thanks to the small size, the inference speed is [2-4x faster](#speed) than competitors.
- __Portable__: Models come with native ONNX support, making them easy to deploy on any platform.
- __Quantization Aware__: Down-cast embeddings from `f32` to `i8` without losing much recall.
- __Multilingual__: Trained on a balanced dataset, the recall is great across over 20 languages.

[usearch]: https://github.com/unum-cloud/usearch
[matryoshka]: https://arxiv.org/abs/2205.13147

## Models

For accuracy and speed benchmarks refer to the [evaluation page](https://github.com/unum-cloud/uform/blob/main/BENCHMARKS.md).

### Embedding Models



Model
Parameters
Languages
Architecture




uform3-image-text-english-large 🆕
365 M
1
12 layer BERT, ViT-L/14


uform3-image-text-english-base
143 M
1
4 layer BERT, ViT-B/16


uform3-image-text-english-small 🆕
79 M
1
4 layer BERT, ViT-S/16


uform3-image-text-multilingual-base
206M
21
12 layer BERT, ViT-B/16

### Generative Models



Model
Parameters
Purpose
Architecture




uform-gen2-dpo 🆕
1.2 B
Chat, Image Captioning, VQA
qwen1.5-0.5B, ViT-H/14


uform-gen2-qwen-500m
1.2 B
Chat, Image Captioning, VQA
qwen1.5-0.5B, ViT-H/14


uform-gen ⚠️
1.5 B
Image Captioning, VQA
llama-1.3B, ViT-B/16

## Quick Start Examples

### Embedding Models

First, `pip install uform`.
Then, load the model:

```py
from uform import get_model, Modality

processors, models = get_model('unum-cloud/uform3-image-text-english-small')

model_text = models[Modality.TEXT_ENCODER]
model_image = models[Modality.IMAGE_ENCODER]
processor_text = processors[Modality.TEXT_ENCODER]
processor_image = processors[Modality.IMAGE_ENCODER]
```

Embed images:

```py
import requests
from io import BytesIO
from PIL import Image

image_url = 'https://media-cdn.tripadvisor.com/media/photo-s/1b/28/6b/53/lovely-armenia.jpg'
image = Image.open(BytesIO(requests.get(image_url).content))
image_data = processor_image(image)
image_features, image_embedding = model_image.encode(image_data, return_features=True)
```

Embed queries:

```py
text = 'a cityscape bathed in the warm glow of the sun, with varied architecture and a towering, snow-capped mountain rising majestically in the background'
text_data = processor_text(text)
text_features, text_embedding = model_text.encode(text_data, return_features=True)
```

For more details check out:

- Python docs on embedding models in [python/README.md](https://github.com/unum-cloud/uform/blob/main/python/README.md#embedding-models)
- JavaScript docs on embedding models in [javascript/README.md](https://github.com/unum-cloud/uform/blob/main/javascript/README.md#embedding-models)
- Swift docs on embedding models in [swift/README.md](https://github.com/unum-cloud/uform/blob/main/swift/README.md#embedding-models)

### Generative Models

The generative models are natively compatible with

```python
from transformers import AutoModel, AutoProcessor

model = AutoModel.from_pretrained('unum-cloud/uform-gen2-dpo', trust_remote_code=True)
processor = AutoProcessor.from_pretrained('unum-cloud/uform-gen2-dpo', trust_remote_code=True)

prompt = 'Question or Instruction'
image = Image.open('image.jpg')

inputs = processor(text=[prompt], images=[image], return_tensors='pt')

with torch.inference_mode():
output = model.generate(
**inputs,
do_sample=False,
use_cache=True,
max_new_tokens=256,
eos_token_id=151645,
pad_token_id=processor.tokenizer.pad_token_id
)
prompt_len = inputs['input_ids'].shape[1]
decoded_text = processor.batch_decode(output[:, prompt_len:])[0]
```

For more details check out:

- Python docs on generative models in [python/README.md](https://github.com/unum-cloud/uform/blob/main/python/README.md#generative-models)
- JavaScript docs on generative models 🔜
- Swift docs on generative models 🔜

## Technical Details

### Down-casting, Quantization, Matryoshka, and Slicing

Depending on the application, the embeddings can be down-casted to smaller numeric representations without losing much recall.
Switching from `f32` to `f16` is recommended in almost all cases, unless you are running on very old hardware without half-precision support.
Switching to `i8` with linear scaling is also possible, but will be noticeable in the recall on larger collections with millions of searchable entries.
Similarly, for higher-dimensional embeddings (512 or 768), a common strategy is to quantize them into single-bit representations for faster search.

```python
import numpy as np

f32_embedding: np.ndarray = model.encode_text(text_data, return_features=False)
f16_embedding: np.ndarray = f32_embedding.astype(np.float16)
i8_embedding: np.ndarray = (f32_embedding * 127).astype(np.int8)
b1_embedding: np.ndarray = np.packbits((f32_embedding > 0).astype(np.uint8))
```

Alternative approach to quantization is to use the Matryoshka embeddings, where the embeddings are sliced into smaller parts, and the search is performed in a hierarchical manner.

```python
import numpy as np

large_embedding: np.ndarray = model.encode_text(text_data, return_features=False)
small_embedding: np.ndarray = large_embedding[:, :256]
tiny_embedding: np.ndarray = large_embedding[:, :64]
```

Both approaches are natively supported by the [USearch][github-usearch] vector-search engine and the [SimSIMD][github-simsimd] numerics libraries.
When dealing with small collections (up to millions of entries) and looking for low-latency cosine distance calculations, you can [achieve 5x-2500x performance improvement][report-simsimd] over Torch, NumPy, SciPy, and vanilla Python using SimSIMD.

```python
from simsimd import cosine, hamming

distance: float = cosine(f32_embedding, f32_embedding) # 32x SciPy performance on Apple M2 CPU
distance: float = cosine(f16_embedding, f16_embedding) # 79x SciPy performance on Apple M2 CPU
distance: float = cosine(i8_embedding, i8_embedding) # 133x SciPy performance on Apple M2 CPU
distance: float = hamming(b1_embedding, b1_embedding) # 17x SciPy performance on Apple M2 CPU
```

Similarly, when dealing with large collections (up to billions of entries per server) and looking for high-throughput search, you can [achieve 100x performance improvement][report-usearch] over FAISS and other vector-search solutions using USearch.
Here are a couple of examples:

```python
from usearch.index import Index

f32_index = Index(ndim=64, metric='cos', dtype='f32') # for Matryoshka embeddings
f16_index = Index(ndim=64, metric='cos', dtype='f16') # for Matryoshka embeddings
i8_index = Index(ndim=256, metric='cos', dtype='i8') # for quantized embeddings
b1_index = Index(ndim=768, metric='hamming', dtype='b1') # for binary embeddings
```

[github-usearch]: https://github.com/unum-cloud/usearch
[github-simsimd]: https://github.com/ashvardanian/simsimd
[report-usearch]: https://www.unum.cloud/blog/2023-11-07-scaling-vector-search-with-intel
[report-simsimd]: https://ashvardanian.com/posts/python-c-assembly-comparison/

### Compact Packaging

PyTorch is a heavy dependency to carry, especially if you run on Edge or IoT devices.
Using vanilla ONNX runtime, one can significantly reduce memory consumption and deployment latency.

```sh
$ conda create -n uform_torch python=3.10 -y
$ conda create -n uform_onnx python=3.10 -y
$ conda activate uform_torch && pip install -e ".[torch]" && conda deactivate
$ conda activate uform_onnx && pip install -e ".[onnx]" && conda deactivate
$ du -sh $(conda info --envs | grep 'uform_torch' | awk '{print $2}')
> 5.2G ~/conda/envs/uform_torch
$ du -sh $(conda info --envs | grep 'uform_onnx' | awk '{print $2}')
> 461M ~/conda/envs/uform_onnx
```

Most of that weight can be further reduced down to 100 MB for both the model and the runtime.
You can pick one of many supported [ONNX execution providers][onnx-providers], which includes XNNPACK, CUDA and TensorRT for Nvidia GPUs, OpenVINO on Intel, DirectML on Windows, ROCm on AMD, CoreML on Apple devices, and more to come.

[onnx-providers]: https://onnxruntime.ai/docs/execution-providers/

### Multimodal Chat in CLI

The generative models can be used for chat-like experiences in the command line.
For that, you can use the `uform-chat` CLI tool, which is available in the UForm package.

```bash
$ pip install uform
$ uform-chat --model unum-cloud/uform-gen2-dpo --image=zebra.jpg
$ uform-chat --model unum-cloud/uform-gen2-dpo \
> --image="https://bit.ly/3tIVg9M" \
> --device="cuda:0" \
> --fp16
```