Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/ur-whitelab/py0
https://github.com/ur-whitelab/py0
Last synced: about 1 month ago
JSON representation
- Host: GitHub
- URL: https://github.com/ur-whitelab/py0
- Owner: ur-whitelab
- License: gpl-2.0
- Created: 2020-05-01T15:29:40.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2023-03-25T01:33:17.000Z (almost 2 years ago)
- Last Synced: 2024-04-15T15:11:15.137Z (9 months ago)
- Language: Jupyter Notebook
- Homepage: https://ur-whitelab.github.io/py0/
- Size: 234 MB
- Stars: 2
- Watchers: 3
- Forks: 4
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Compartmental Epidomiology Modeling
![tests](https://github.com/ur-whitelab/py0/actions/workflows/tests.yml/badge.svg) ![docs](https://github.com/ur-whitelab/py0/actions/workflows/docs.yml/badge.svg)
``py0`` is a python implementation of compartmental disease modeling.
![](docs/source/img/py_0.gif)
## Installation
To install ``py0``:
```sh
pip install py0@git+https://github.com/ur-whitelab/py0.git
```## Maximum Entropy Biasing
``py0`` can be coupled with [MaxEnt](https://ur-whitelab.github.io/maxent/) to modify epidomiology parameters to find the best fit to disease trajectory given a set of observations and also infer the true origin of the outbreak (patient-zero). These observations are time-averaged fractional values that can come from different compartments (S, E, A, I and R) of a known synthetic reference trajectory or real pandemic spread data.
### Creating an Ensemble of Trajectories
We try to explore the disease trajectory space over a distribution of epidomiology parameters, while changing the infection origin to different nodes (counties).
![](docs/source/img/sampling.gif)### MaxEnt Fit
![](docs/source/img/fit.gif)
### MaxEnt Installation
The package uses Keras (Tensorflow). To install:
```sh
pip install maxent-infer
```## Citation
[See paper](https://journals.aps.org/pre/abstract/10.1103/PhysRevE.106.014306) and the citation:
```bibtex
@article{ansari2022inferring,
title={Inferring spatial source of disease outbreaks using maximum entropy},
author={Ansari, Mehrad and Soriano-Pa{\~n}os, David and Ghoshal, Gourab and White, Andrew D},
journal={Physical Review E},
volume={106},
number={1},
pages={014306},
year={2022},
publisher={APS}
}
```## License
[![License: GPL v2](https://img.shields.io/badge/License-GPL%20v2-blue.svg)](https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html)
## Authors
``py0`` is developed by [Mehrad Ansari]([email protected]), [Rainier Barrett]([email protected]) and [Andrew White]([email protected]).