Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/usarawgi911/robustness-to-missing-features
https://github.com/usarawgi911/robustness-to-missing-features
Last synced: 22 days ago
JSON representation
- Host: GitHub
- URL: https://github.com/usarawgi911/robustness-to-missing-features
- Owner: usarawgi911
- Created: 2020-07-21T21:45:47.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2022-11-21T22:55:36.000Z (almost 2 years ago)
- Last Synced: 2023-03-05T12:04:29.026Z (over 1 year ago)
- Language: Python
- Size: 2.77 MB
- Stars: 6
- Watchers: 2
- Forks: 2
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Robustness to Missing Features using Hierarchical Clustering with Split Neural Networks
Code for the paper - [https://ojs.aaai.org/index.php/AAAI/article/view/17905](https://ojs.aaai.org/index.php/AAAI/article/view/17905)
The following readme has simple steps to reproduce the training and evaluation for any of the datasets mentioned.
## Setup
1. Setup Virtual Environment
```
pip install virtualenv
virtualenv venv
source venv/bin/activate
```
2. Install dependencies
`pip install -r requirements.txt`3. Run the code
## Run
### Train
```
python main.py train --dataset_dir datasets --dataset life --model_dir life_models --verbose 1
```### Evaluate
```
python main.py evaluate --dataset_dir datasets --dataset life --model_dir life_models --verbose 1
```## Further Notes
### Mapping for datasets to `--dataset` flag
1. Life Expectancy (WHO) : life
2. Bands : bands
3. Kidney Disease : kidney_disease
4. Mammographics : mammographics
5. Horse Colic : horse
6. Pima Indians : pima
7. Hepatitis : hepatitis
8. Breast Cancer Winconsin : winconsin## Citation
If you find this project useful for your research, please use the following BibTeX entry to cite our paper [https://ojs.aaai.org/index.php/AAAI/article/view/17905](https://ojs.aaai.org/index.php/AAAI/article/view/17905).
@article{khincha2021missing,
author={Khincha, Rishab and Sarawgi, Utkarsh and Zulfikar, Wazeer and Maes, Pattie},
title={Robustness to Missing Features using Hierarchical Clustering with Split Neural Networks (Student Abstract)},
volume={35},
url={https://ojs.aaai.org/index.php/AAAI/article/view/17905},
number={18},
journal={Proceedings of the AAAI Conference on Artificial Intelligence},
year={2021},
month={May},
pages={15817-15818}
}