Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/uscbiostats/rbootcamp
R boot camp: Scientific Computing
https://github.com/uscbiostats/rbootcamp
education r scientific-computing simulation tutorial
Last synced: 3 days ago
JSON representation
R boot camp: Scientific Computing
- Host: GitHub
- URL: https://github.com/uscbiostats/rbootcamp
- Owner: USCbiostats
- Created: 2018-04-25T16:01:27.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2024-08-22T23:11:07.000Z (3 months ago)
- Last Synced: 2024-08-23T00:32:50.435Z (3 months ago)
- Topics: education, r, scientific-computing, simulation, tutorial
- Language: HTML
- Homepage:
- Size: 80.3 MB
- Stars: 27
- Watchers: 10
- Forks: 16
- Open Issues: 5
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# R Bootcamp
A snapshot of previous versins can be found at:
- [Fall 2020](https://github.com/USCbiostats/rbootcamp/tree/fall2020)
(recorded sessions available on YouTube [here](https://www.youtube.com/playlist?list=PLnKhSzUbsBIk_OqfCWx6d2Olv0E9cxHSj)).- [Fall 2019](https://github.com/USCbiostats/rbootcamp/tree/fall2019).
- [Fall 2018](https://github.com/USCbiostats/rbootcamp/tree/fall2018).
## Draft of the 2021 version (WIP)
- **Lecture 1** What is R? A motivating example of data viz
- **Lecture 2** Data wrangling fundamentals
- **Lecture 3** Automatic docs with Rmarkdown
This year's presenters: [@erickawaguchi](https://github.com/erickawaguchi) and Sarah Piombo.
**Website**: https://github.com/USCbiostats/rbootcamp
This boot camp has as main goal to give a general overview of scientific
computing, and in particular, on the R programming language. It is
divided in 3 presentations. More information [here](flyer/README.md).## Prerequisites
We will be using R and RStudio
1. R: download [here](https://cran.r-project.org/).
2. RStudio: download [here](https://www.rstudio.com/products/rstudio/download/#download).# References
Wickham, H., and Grolemund, G. (2017) *R for Data Science: Visualize, Model, Transform, Tidy, and Import Data*. O'Reilly Media. ([free online](http://r4ds.had.co.nz/))
Wickham, H. (2019) *Advanced R*, 2nd Edition. CRC Press. ([free online](https://adv-r.hadley.nz/))
Peng, R. (2016) *R Programming for Data Science* ([free online](https://bookdown.org/rdpeng/rprogdatascience))
[Rstudio cheatsheets](https://www.rstudio.com/resources/cheatsheets/)
----