Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/usnistgov/chemnlp

ChemNLP: A Natural Language Processing based Library for Materials Chemistry Text Data
https://github.com/usnistgov/chemnlp

ai llm natural-language-processing nist-jarvis python transformers

Last synced: 16 days ago
JSON representation

ChemNLP: A Natural Language Processing based Library for Materials Chemistry Text Data

Awesome Lists containing this project

README

        

[![name](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/knc6/jarvis-tools-notebooks/blob/master/jarvis-tools-notebooks/ChemNLP_Example.ipynb)
![alt text](https://github.com/usnistgov/chemnlp/actions/workflows/main.yml/badge.svg)
[![DOI](https://zenodo.org/badge/523320947.svg)](https://zenodo.org/badge/latestdoi/523320947)

# ChemNLP

# Table of Contents
* [Introduction](#intro)
* [Installation](#install)
* [Examples](#example)
* [Web-app](#webapp)
* [Reference](#reference)


Introduction
-------------------------
ChemNLP is a software-package to process chemical information from the scientific literature.


ChemNLP


Installation
-------------------------
First create a conda environment:
Install miniconda environment from https://conda.io/miniconda.html
Based on your system requirements, you'll get a file something like 'Miniconda3-latest-XYZ'.

Now,

```
bash Miniconda3-latest-Linux-x86_64.sh (for linux)
bash Miniconda3-latest-MacOSX-x86_64.sh (for Mac)
```
Download 32/64 bit python 3.8 miniconda exe and install (for windows)
Now, let's make a conda environment, say "chemnlp", choose other name as you like::
```
conda create --name chemnlp python=3.9
source activate chemnlp
```
#### Method 1 (using setup.py):

Now, let's install the package:
```
git clone https://github.com/usnistgov/chemnlp.git
cd chemnlp
python setup.py develop
cde data download
```

#### Method 2 (using pypi):

As an alternate method, ChemNLP can also be installed using `pip` command as follows:
```
pip install chemnlp
cde data download
```


Examples
---------
#### Parse chemical formula

```
run_chemnlp.py --file_path="chemnlp/tests/XYZ"
```

#### Text classification example

```
python chemnlp/classification/scikit_class.py --csv_path chemnlp/sample_data/cond_mat_small.csv
```

[Google Colab example for installation and text classification](https://colab.research.google.com/github/knc6/jarvis-tools-notebooks/blob/master/jarvis-tools-notebooks/ChemNLP_Example.ipynb)

#### Text generation example

[Google Colab example for Text Generation with HuggingFace](https://colab.research.google.com/github/knc6/jarvis-tools-notebooks/blob/master/jarvis-tools-notebooks/ChemNLP_TitleToAbstract.ipynb)


Using the webapp
---------
The webapp is available at: https://jarvis.nist.gov/jarvischemnlp

![JARVIS-ChemNLP](https://github.com/usnistgov/chemnlp/blob/develop/chemnlp/PTable.PNG)


Reference
---------

1. [ChemNLP: A Natural Language Processing based Library for Materials Chemistry Text Data](https://github.com/usnistgov/chemnlp)
2. [AtomGPT: Atomistic Generative Pretrained Transformer for Forward and Inverse Materials Design](https://pubs.acs.org/doi/full/10.1021/acs.jpclett.4c01126)
3. [JARVIS-Leaderboard](https://pages.nist.gov/jarvis_leaderboard)
4. [NIST-JARVIS Infrastructure](https://jarvis.nist.gov/)