Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/utiasdsl/gym-pybullet-drones
PyBullet Gymnasium environments for single and multi-agent reinforcement learning of quadcopter control
https://github.com/utiasdsl/gym-pybullet-drones
betaflight control crazyflie gym gymnasium multi-agent pybullet quadcopter quadrotor reinforcement-learning robotics sitl stable-baselines3 uav
Last synced: 4 days ago
JSON representation
PyBullet Gymnasium environments for single and multi-agent reinforcement learning of quadcopter control
- Host: GitHub
- URL: https://github.com/utiasdsl/gym-pybullet-drones
- Owner: utiasDSL
- License: mit
- Created: 2020-08-10T07:38:09.000Z (over 4 years ago)
- Default Branch: main
- Last Pushed: 2024-07-27T15:06:14.000Z (6 months ago)
- Last Synced: 2025-01-17T00:02:26.472Z (4 days ago)
- Topics: betaflight, control, crazyflie, gym, gymnasium, multi-agent, pybullet, quadcopter, quadrotor, reinforcement-learning, robotics, sitl, stable-baselines3, uav
- Language: Python
- Homepage: https://utiasDSL.github.io/gym-pybullet-drones/
- Size: 116 MB
- Stars: 1,334
- Watchers: 18
- Forks: 388
- Open Issues: 100
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Citation: CITATION.cff
Awesome Lists containing this project
README
# gym-pybullet-drones
This is a minimalist refactoring of the original `gym-pybullet-drones` repository, designed for compatibility with [`gymnasium`](https://github.com/Farama-Foundation/Gymnasium), [`stable-baselines3` 2.0](https://github.com/DLR-RM/stable-baselines3/pull/1327), and SITL [`betaflight`](https://github.com/betaflight/betaflight)/[`crazyflie-firmware`](https://github.com/bitcraze/crazyflie-firmware/).
> **NOTE**: if you prefer to access the original codebase, presented at IROS in 2021, please `git checkout [paper|master]` after cloning the repo, and refer to the corresponding `README.md`'s.
## Installation
Tested on Intel x64/Ubuntu 22.04 and Apple Silicon/macOS 14.1.
```sh
git clone https://github.com/utiasDSL/gym-pybullet-drones.git
cd gym-pybullet-drones/conda create -n drones python=3.10
conda activate dronespip3 install --upgrade pip
pip3 install -e . # if needed, `sudo apt install build-essential` to install `gcc` and build `pybullet````
## Use
### PID control examples
```sh
cd gym_pybullet_drones/examples/
python3 pid.py # position and velocity reference
python3 pid_velocity.py # desired velocity reference
```### Downwash effect example
```sh
cd gym_pybullet_drones/examples/
python3 downwash.py
```### Reinforcement learning examples (SB3's PPO)
```sh
cd gym_pybullet_drones/examples/
python learn.py # task: single drone hover at z == 1.0
python learn.py --multiagent true # task: 2-drone hover at z == 1.2 and 0.7
```
### utiasDSL `pycffirmware` Python Bindings example (multiplatform, single-drone)
Install [`pycffirmware`](https://github.com/utiasDSL/pycffirmware?tab=readme-ov-file#installation) for Ubuntu, macOS, or Windows
```sh
cd gym_pybullet_drones/examples/
python3 cff-dsl.py
```### Betaflight SITL example (Ubuntu only)
```sh
git clone https://github.com/betaflight/betaflight # use the `master` branch at the time of writing (future release 4.5)
cd betaflight/
make arm_sdk_install # if needed, `apt install curl``
make TARGET=SITL # comment out line: https://github.com/betaflight/betaflight/blob/master/src/main/main.c#L52
cp ~/gym-pybullet-drones/gym_pybullet_drones/assets/eeprom.bin ~/betaflight/ # assuming both gym-pybullet-drones/ and betaflight/ were cloned in ~/
betaflight/obj/main/betaflight_SITL.elf
```In another terminal, run the example
```sh
conda activate drones
cd gym_pybullet_drones/examples/
python3 beta.py --num_drones 1 # check the steps in the file's docstrings to use multiple drones
```## Citation
If you wish, please cite our [IROS 2021 paper](https://arxiv.org/abs/2103.02142) ([and original codebase](https://github.com/utiasDSL/gym-pybullet-drones/tree/paper)) as
```bibtex
@INPROCEEDINGS{panerati2021learning,
title={Learning to Fly---a Gym Environment with PyBullet Physics for Reinforcement Learning of Multi-agent Quadcopter Control},
author={Jacopo Panerati and Hehui Zheng and SiQi Zhou and James Xu and Amanda Prorok and Angela P. Schoellig},
booktitle={2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
year={2021},
volume={},
number={},
pages={7512-7519},
doi={10.1109/IROS51168.2021.9635857}
}
```## References
- Carlos Luis and Jeroome Le Ny (2016) [*Design of a Trajectory Tracking Controller for a Nanoquadcopter*](https://arxiv.org/pdf/1608.05786.pdf)
- Nathan Michael, Daniel Mellinger, Quentin Lindsey, Vijay Kumar (2010) [*The GRASP Multiple Micro UAV Testbed*](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.169.1687&rep=rep1&type=pdf)
- Benoit Landry (2014) [*Planning and Control for Quadrotor Flight through Cluttered Environments*](http://groups.csail.mit.edu/robotics-center/public_papers/Landry15)
- Julian Forster (2015) [*System Identification of the Crazyflie 2.0 Nano Quadrocopter*](https://www.research-collection.ethz.ch/handle/20.500.11850/214143)
- Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah Dormann (2019) [*Stable Baselines3*](https://github.com/DLR-RM/stable-baselines3)
- Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree Anandkumar, Yisong Yue, and Soon-Jo Chung (2019)
[*Neural Lander: Stable Drone Landing Control Using Learned Dynamics*](https://arxiv.org/pdf/1811.08027.pdf)
- C. Karen Liu and Dan Negrut (2020) [*The Role of Physics-Based Simulators in Robotics*](https://www.annualreviews.org/doi/pdf/10.1146/annurev-control-072220-093055)
- Yunlong Song, Selim Naji, Elia Kaufmann, Antonio Loquercio, and Davide Scaramuzza (2020) [*Flightmare: A Flexible Quadrotor Simulator*](https://arxiv.org/pdf/2009.00563.pdf)## Core Team WIP
- [ ] Multi-drone `crazyflie-firmware` SITL support (@spencerteetaert, @JacopoPan)
- [ ] Use SITL services with steppable simulation (@JacopoPan)## Desired Contributions/PRs
- [ ] Add motor delay, advanced ESC modeling by implementing a buffer in `BaseAviary._dynamics()`
- [ ] Replace `rpy` with quaternions (and `ang_vel` with body rates) by editing `BaseAviary._updateAndStoreKinematicInformation()`, `BaseAviary._getDroneStateVector()`, and the `.computeObs()` methods of relevant subclasses## Troubleshooting
- On Ubuntu, with an NVIDIA card, if you receive a "Failed to create and OpenGL context" message, launch `nvidia-settings` and under "PRIME Profiles" select "NVIDIA (Performance Mode)", reboot and try again.
Run all tests from the top folder with
```sh
pytest tests/
```-----
> University of Toronto's [Dynamic Systems Lab](https://github.com/utiasDSL) / [Vector Institute](https://github.com/VectorInstitute) / University of Cambridge's [Prorok Lab](https://github.com/proroklab)