https://github.com/uudigitalhumanitieslab/timealign
Parallel corpus annotation and visualization
https://github.com/uudigitalhumanitieslab/timealign
annotation django-application parallel-corpus visualization
Last synced: 9 months ago
JSON representation
Parallel corpus annotation and visualization
- Host: GitHub
- URL: https://github.com/uudigitalhumanitieslab/timealign
- Owner: UUDigitalHumanitieslab
- License: mit
- Created: 2016-07-20T12:06:36.000Z (over 9 years ago)
- Default Branch: develop
- Last Pushed: 2024-01-23T00:58:43.000Z (about 2 years ago)
- Last Synced: 2025-05-07T06:05:37.072Z (9 months ago)
- Topics: annotation, django-application, parallel-corpus, visualization
- Language: Python
- Homepage: http://time-in-translation.hum.uu.nl
- Size: 6.16 MB
- Stars: 7
- Watchers: 3
- Forks: 1
- Open Issues: 11
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# TimeAlign
[](https://doi.org/10.5281/zenodo.10409456)
TimeAlign is a web application designed for cross-linguistic research using parallel corpora.
It provides:
* An annotation interface where similar forms in aligned phrases can be collected by a team of one or more annotators.
* Descriptive statistics and multiple visualization methods for cross-linguistic variation data.
A short demo of the annotation interface is available [here](https://time-in-translation.hum.uu.nl/timealign/instructions/1/)
TimeAlign was created as part of the *Time in Translation* research project. For more information, see the [project website](https://time-in-translation.hum.uu.nl).
## Installation
TimeAlign is created with the [Django web framework](https://www.djangoproject.com/) and requires Python 3.
After installing the dependencies for the MySQL database driver (see below), you can install the required python packages by running `pip install -r requirements.txt`
### MySQL Dependencies
If you want to use MySQL as your database backend (recommended) use the following commands to install a database server and the required packages for the python client.
#### CentOS 7.7
sudo yum install mariadb-server mariadb-devel python3-devel
sudo yum groupinstall 'Development Tools'
#### Ubuntu 18.04
sudo apt-get install python3-dev default-libmysqlclient-dev libssl-dev mysql-server
### Setting up TimeAlign in a virtual environment
# Clone the repository
git clone [repository URL]
cd timealign/
# NOTE! When using Pycharm, .env cannot be recognized as a virtual environment folder. Use 'venv' instead.
# Create a virtual environment
sudo apt-get install virtualenv
virtualenv .env
source .env/bin/activate
pip install --upgrade pip wheel
pip install -r requirements.txt
# Create a database and change the databases section in timealign/settings.py accordingly
## Setup database: https://dev.mysql.com/doc/mysql-getting-started/en/#mysql-getting-started-installing
## Create user: https://dev.mysql.com/doc/refman/8.0/en/creating-accounts.html
# Migrate the database
## Create project db setting
cp ./timealign/settings_secret_default.py ./timealign/settings_secret.py
## Update information in the 'settings_secret.py', then execute migrate script
python manage.py migrate
# Initialize revisions
python manage.py createinitialrevisions
# Run the tests
python manage.py test
If the test runs OK, you should be ready to roll! Run the webserver using:
# Start the (local) web server
python manage.py runserver
During debugging, we additionally use the [Django Debug Toolbar](https://django-debug-toolbar.readthedocs.io/). Install it with:
pip install django-debug-toolbar
And then uncomment the lines referring to the toolbar in `timealign/settings.py`.
## Documentation
You can find ERD diagrams of the applications in [`doc/models`](doc/models/README.md).
General information on the Time in Translation-project can be found on [our website](https://time-in-translation.hum.uu.nl/).
## Citing
If you happen to have used (parts of) this project for your research, please refer to this paper:
[van der Klis, M., Le Bruyn, B., de Swart, H. (2017)](http://www.aclweb.org/anthology/E17-2080). Mapping the Perfect via Translation Mining. *Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers* 2017, 497-502.