Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/uzh-rpg/rpg_ramnet
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)
https://github.com/uzh-rpg/rpg_ramnet
Last synced: 2 months ago
JSON representation
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)
- Host: GitHub
- URL: https://github.com/uzh-rpg/rpg_ramnet
- Owner: uzh-rpg
- License: gpl-3.0
- Created: 2021-02-17T10:34:32.000Z (almost 4 years ago)
- Default Branch: master
- Last Pushed: 2024-04-01T10:44:32.000Z (10 months ago)
- Last Synced: 2024-08-03T14:05:17.897Z (6 months ago)
- Language: Python
- Homepage:
- Size: 43.5 MB
- Stars: 91
- Watchers: 13
- Forks: 28
- Open Issues: 19
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-rgbd-datasets - EventScape - |Synthetic |SOR, and SOE |Driving |Color, Depth |Semantic Segmentation, Navigation Data (Position, orientation, angular velocity, etc) |758 sequences |2021 | (RGB-D Datasets <a id="list" class="anchor" href="#list" aria-hidden="true"><span class="octicon octicon-link"></span></a>)
README
# Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction
This is the code for the paper **Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction** by
[Daniel Gehrig*](https://danielgehrig18.github.io/), Michelle Rüegg*, [Mathias Gehrig](https://magehrig.github.io/), [Javier Hidalgo-Carrió](https://jhidalgocarrio.github.io), and [Davide
Scaramuzza](http://rpg.ifi.uzh.ch/people_scaramuzza.html):You can find a pdf of the paper
[here](http://rpg.ifi.uzh.ch/docs/RAL21_Gehrig.pdf) and the project homepage [here](http://rpg.ifi.uzh.ch/RAMNet.html). If you use this work in an academic context, please cite the following publication:```bibtex
@Article{RAL21Gehrig,
author = {Daniel Gehrig, Michelle Rüegg, Mathias Gehrig, Javier Hidalgo-Carrio and Davide Scaramuzza},
title = {Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction},
journal = {{IEEE} Robotic and Automation Letters. (RA-L)},
url = {http://rpg.ifi.uzh.ch/docs/RAL21_Gehrig.pdf},
year = 2021
}
```If you use the event-camera plugin go to [CARLA](https://carla.readthedocs.io/en/latest/ref_sensors/#dvs-camera), please cite the following publication:
```bibtex
@Article{Hidalgo20threedv,
author = {Javier Hidalgo-Carrio, Daniel Gehrig and Davide Scaramuzza},
title = {Learning Monocular Dense Depth from Events},
journal = {{IEEE} International Conference on 3D Vision.(3DV)},
url = {http://rpg.ifi.uzh.ch/docs/3DV20_Hidalgo.pdf},
year = 2020
}
```## Install with Anaconda
The installation requires [Anaconda3](https://www.anaconda.com/distribution/).
You can create a new Anaconda environment with the required dependencies as
follows (make sure to adapt the CUDA toolkit version according to your setup):```bash
conda create --name RAMNET python=3.7
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
pip install tb-nightly kornia scikit-learn scikit-image opencv-python
```
## BranchesTo run experiments on Event Scape plese switch to the `main` branch
git checkout main
To run experiments on real data from MVSEC, switch to `asynchronous_irregular_real_data`.git checkout asynchronous_irregular_real_data
## Checkpoints
The checkpoints for RAM-Net can be found here:
* [trained on EventScape](http://rpg.ifi.uzh.ch/data/RAM_Net/checkpoints/ramnet_sim.pth.tar)
* [trained on MVSEC](http://rpg.ifi.uzh.ch/data/RAM_Net/checkpoints/ramnet_sim2real.pth.tar)## EventScape
This work uses the EventScape dataset which can be downloaded here:
* [Training Set (71 Gb)](http://rpg.ifi.uzh.ch/data/RAM_Net/dataset/Town01-03_train.zip)
* [Validation Set (12 Gb)](http://rpg.ifi.uzh.ch/data/RAM_Net/dataset/Town05_val.zip)
* [Test Set (14 Gb)](http://rpg.ifi.uzh.ch/data/RAM_Net/dataset/Town05_test.zip)
## Qualitative results on MVSEC
Here the qualitative results of RAM-Net against state-of-the-art is shown.
The video shows MegaDepth, E2Depth and RAM-Net in the upper row, image and event inputs and depth ground truth in the lower row.
## Using RAM-Net
A detailed description on how to run the code can be found in the README in the folder `/RAM_Net`. Another README can be found in `/RAM_Net/configs`, it describes the meaning of the different parameters in the configs.