Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/vaexio/vaex
Out-of-Core hybrid Apache Arrow/NumPy DataFrame for Python, ML, visualization and exploration of big tabular data at a billion rows per second ๐
https://github.com/vaexio/vaex
bigdata data-science dataframe hdf5 machine-learning machinelearning memory-mapped-file pyarrow python tabular-data visualization
Last synced: 3 days ago
JSON representation
Out-of-Core hybrid Apache Arrow/NumPy DataFrame for Python, ML, visualization and exploration of big tabular data at a billion rows per second ๐
- Host: GitHub
- URL: https://github.com/vaexio/vaex
- Owner: vaexio
- License: mit
- Created: 2014-09-27T09:44:42.000Z (about 10 years ago)
- Default Branch: master
- Last Pushed: 2024-10-08T16:23:10.000Z (2 months ago)
- Last Synced: 2024-10-29T11:24:09.020Z (about 1 month ago)
- Topics: bigdata, data-science, dataframe, hdf5, machine-learning, machinelearning, memory-mapped-file, pyarrow, python, tabular-data, visualization
- Language: Python
- Homepage: https://vaex.io
- Size: 133 MB
- Stars: 8,290
- Watchers: 144
- Forks: 589
- Open Issues: 533
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
- License: LICENSE.txt
- Security: SECURITY.md
- Authors: AUTHORS.txt
Awesome Lists containing this project
- best-of-python - GitHub - 40% open ยท โฑ๏ธ 21.07.2023): (Data Containers & Dataframes)
- awesome-systematic-trading - Vaex - commit/vaexio/vaex/master) ![GitHub Repo stars](https://img.shields.io/github/stars/vaexio/vaex?style=social) | Python, C++ | - Out-of-Core hybrid Apache Arrow/NumPy DataFrame for Python, ML, visualization and exploration of big tabular data at a billion rows per second (Basic Components / Alternative libraries)
- awesome-high-performance-computing - Vaex - A Python library for lazy Out-of-Core DataFrames (similar to Pandas), to visualize and explore big tabular datasets. (Software / Trends)
- awesome-meteo - vaex - of-Core DataFrames (similar to Pandas), to visualize and explore big tabular datasets. (Uncategorized / Uncategorized)
- awesome-dataframes - Vaex - A high performance Python library for lazy Out-of-Core DataFrames (similar to Pandas), to visualize and explore big tabular datasets. (Libraries)
- awesome-list - Vaex - Out-of-Core hybrid Apache Arrow/NumPy DataFrame for Python, ML, visualization and exploration of big tabular data at a billion rows per second. (Data Processing / Data Representation)
- awesome-python-machine-learning-resources - GitHub - 31% open ยท โฑ๏ธ 25.08.2022): (ๆฐๆฎๅฎนๅจๅ็ปๆ)
- awesome-production-machine-learning - Vaex - of-Core DataFrames (similar to Pandas), to visualize and explore big tabular datasets. Vaex uses memory mapping, zero memory copy policy and lazy computations for best performance (no memory wasted). (Optimized Computation)
- StarryDivineSky - vaexio/vaex
- my-awesome-starred - vaexio/vaex - Out-of-Core hybrid Apache Arrow/NumPy DataFrame for Python, ML, visualization and exploration of big tabular data at a billion rows per second ๐ (Python)
- pytrade.org - vaex - of-Core hybrid Apache Arrow/NumPy DataFrame for Python, ML, visualization, and exploration of big tabular data at a billion rows per second ๐ (Curated List / Data Tools)
README
[![Supported Python Versions](https://img.shields.io/pypi/pyversions/vaex-core)](https://pypi.org/project/vaex-core/)
[![Documentation](https://readthedocs.org/projects/vaex/badge/?version=latest)](https://docs.vaex.io)
[![Slack](https://img.shields.io/badge/slack-chat-green.svg)](https://join.slack.com/t/vaexio/shared_invite/zt-shhxzf5i-Cf5n2LtkoYgUjOjbB3bGQQ)# What is Vaex?
Vaex is a high performance Python library for lazy **Out-of-Core DataFrames**
(similar to Pandas), to visualize and explore big tabular datasets. It
calculates *statistics* such as mean, sum, count, standard deviation etc, on an
*N-dimensional grid* for more than **a billion** (`10^9`) samples/rows **per
second**. Visualization is done using **histograms**, **density plots** and **3d
volume rendering**, allowing interactive exploration of big data. Vaex uses
memory mapping, zero memory copy policy and lazy computations for best
performance (no memory wasted).# Installing
With pip:
```
$ pip install vaex
```
Or conda:
```
$ conda install -c conda-forge vaex
```[For more details, see the documentation](https://docs.vaex.io/en/latest/installing.html)
# Key features
## Instant opening of Huge data files (memory mapping)
[HDF5](https://en.wikipedia.org/wiki/Hierarchical_Data_Format) and [Apache Arrow](https://arrow.apache.org/) supported.![opening1a](https://user-images.githubusercontent.com/1765949/82818563-31c1e200-9e9f-11ea-9ee0-0a8c1994cdc9.png)
![opening1b](https://user-images.githubusercontent.com/1765949/82820352-49e73080-9ea2-11ea-9153-d73aa399d329.png)
[Read the documentation on how to efficiently convert your data](https://docs.vaex.io/en/latest/example_io.html) from CSV files, Pandas DataFrames, or other sources.
Lazy streaming from S3 supported in combination with memory mapping.
![opening1c](https://user-images.githubusercontent.com/1765949/82820516-a21e3280-9ea2-11ea-948b-07df26c4b5d3.png)
## Expression system
Don't waste memory or time with feature engineering, we (lazily) transform your data when needed.![expression](https://user-images.githubusercontent.com/1765949/82818733-70f03300-9e9f-11ea-80b0-ab28e7950b5c.png)
## Out-of-core DataFrame
Filtering and evaluating expressions will not waste memory by making copies; the data is kept untouched on disk, and will be streamed only when needed. Delay the time before you need a cluster.![occ-animated](https://user-images.githubusercontent.com/1765949/82821111-c6c6da00-9ea3-11ea-9f9e-498de8133cc2.gif)
## Fast groupby / aggregations
Vaex implements parallelized, highly performant `groupby` operations, especially when using categories (>1 billion/second).![groupby](https://user-images.githubusercontent.com/1765949/82818807-97ae6980-9e9f-11ea-8820-41dd4441057a.png)
## Fast and efficient join
Vaex doesn't copy/materialize the 'right' table when joining, saving gigabytes of memory. With subsecond joining on a billion rows, it's pretty fast!![join](https://user-images.githubusercontent.com/1765949/82818840-a268fe80-9e9f-11ea-8ba2-6a6d52c4af88.png)
## More features
* Remote DataFrames (documentation coming soon)
* Integration into [Jupyter and Voila for interactive notebooks and dashboards](https://vaex.readthedocs.io/en/latest/tutorial_jupyter.html)
* [Machine Learning without (explicit) pipelines](https://vaex.readthedocs.io/en/latest/tutorial_ml.html)## Contributing
See [contributing](CONTRIBUTING.md) page.
## Slack
Join the discussion in our [Slack](https://join.slack.com/t/vaexio/shared_invite/zt-shhxzf5i-Cf5n2LtkoYgUjOjbB3bGQQ) channel!
# Learn more about Vaex
* Articles
* [Beyond Pandas: Spark, Dask, Vaex and other big data technologies battling head to head](https://towardsdatascience.com/beyond-pandas-spark-dask-vaex-and-other-big-data-technologies-battling-head-to-head-a453a1f8cc13) (includes benchmarks)
* [7 reasons why I love Vaex for data science](https://towardsdatascience.com/7-reasons-why-i-love-vaex-for-data-science-99008bc8044b) (tips and trics)
* [ML impossible: Train 1 billion samples in 5 minutes on your laptop using Vaex and Scikit-Learn](https://towardsdatascience.com/ml-impossible-train-a-1-billion-sample-model-in-20-minutes-with-vaex-and-scikit-learn-on-your-9e2968e6f385)
* [How to analyse 100 GB of data on your laptop with Python](https://towardsdatascience.com/how-to-analyse-100s-of-gbs-of-data-on-your-laptop-with-python-f83363dda94)
* [Flying high with Vaex: analysis of over 30 years of flight data in Python](https://towardsdatascience.com/https-medium-com-jovan-veljanoski-flying-high-with-vaex-analysis-of-over-30-years-of-flight-data-in-python-b224825a6d56)
* [Vaex: A DataFrame with super strings - Speed up your text processing up to a 1000x
](https://towardsdatascience.com/vaex-a-dataframe-with-super-strings-789b92e8d861)
* [Vaex: Out of Core Dataframes for Python and Fast Visualization - 1 billion row datasets on your laptop](https://towardsdatascience.com/vaex-out-of-core-dataframes-for-python-and-fast-visualization-12c102db044a)* [Follow our tutorials](https://docs.vaex.io/en/latest/tutorials.html)
* Watch our more recent talks:
* [PyData London 2019](https://www.youtube.com/watch?v=2Tt0i823-ec)
* [SciPy 2019](https://www.youtube.com/watch?v=ELtjRdPT8is)
* Contact us for data science solutions, training, or enterprise support at https://vaex.io/