Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/validatehealth/cmshcc
This R package calculates CMS-HCC risk scores as an alternative to using SAS
https://github.com/validatehealth/cmshcc
hcc medicare medicare-data risk-scores
Last synced: about 2 months ago
JSON representation
This R package calculates CMS-HCC risk scores as an alternative to using SAS
- Host: GitHub
- URL: https://github.com/validatehealth/cmshcc
- Owner: validatehealth
- Created: 2015-06-29T00:35:42.000Z (over 9 years ago)
- Default Branch: master
- Last Pushed: 2019-07-01T14:49:41.000Z (over 5 years ago)
- Last Synced: 2024-08-13T07:13:25.995Z (5 months ago)
- Topics: hcc, medicare, medicare-data, risk-scores
- Language: R
- Homepage: https://www.ValidateHealth.com
- Size: 2.25 MB
- Stars: 25
- Watchers: 13
- Forks: 16
- Open Issues: 4
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- jimsghstars - validatehealth/cmshcc - This R package calculates CMS-HCC risk scores as an alternative to using SAS (R)
README
Based on presentation from:
http://ase.uva.nl/binaries/content/assets/subsites/amsterdam-school-of-economics/r-in-insurance/webster-risk-adjustment-in-r.pdf1) install.packages("devtools") if not already installed
2) install cmshcc package using: devtools::install_github("healthactuary/cmshcc")
3) load the cmshcc package using library(cmshcc)
4) generate a sample PERSON data frame or use your own with same format: PERSON <- generate_PERSON()
5) load the CMS-HCC diagnosis code to HCC mapping: cmshcc_map <- load_cmshcc_map()
6) create a diagnosis data frame using mapping or use your own data with same format: DIAG <- generate_DIAG(cmshcc_map)
7) Evaluate the 2017 V22 CMS-HCC models:
Community_NonDual_Aged = evaluate_v22_2017(PERSON, DIAG, "Community_NonDual_Aged")
Community_NonDual_Disabled = evaluate_v22_2017(PERSON, DIAG, "Community_NonDual_Disabled")
Community_FBDual_Aged = evaluate_v22_2017(PERSON, DIAG, "Community_FBDual_Aged")
Community_FBDual_Disabled = evaluate_v22_2017(PERSON, DIAG, "Community_FBDual_Disabled")
Community_PBDual_Aged = evaluate_v22_2017(PERSON, DIAG, "Community_PBDual_Aged")
Community_PBDual_Disabled = evaluate_v22_2017(PERSON, DIAG, "Community_PBDual_Disabled")
Institutional = evaluate_v22_2017(PERSON, DIAG, "Institutional")Bind together results in one dataframe if preferable:
results <- cbind(Community_NonDual_Aged, Community_NonDual_Disabled, Community_FBDual_Aged, Community_FBDual_Disabled, Community_PBDual_Aged, Community_PBDual_Disabled, Institutional)