An open API service indexing awesome lists of open source software.

https://github.com/vam-sin/ribogl

Graph+Sequence approach to predicting ribosome densities at the gene level
https://github.com/vam-sin/ribogl

graph-neural-networks interpretability lstm ribosome-profiling

Last synced: 6 months ago
JSON representation

Graph+Sequence approach to predicting ribosome densities at the gene level

Awesome Lists containing this project

README

        

# RiboGL
Repository of "Towards improving full-length ribosome density prediction by bridging sequence and graph-based representations". The dataset files can be found here: https://zenodo.org/records/12180308

## RiboGL Model

## Plotly Server

![plot](./figures/circular_plot.png)

### Setup
Inside the `interpret` subfolder one can find the code to run the Plotly server to intepret the RiboGL predictions.

In order to run the server:
1. Install the dependecies in a conda envirorment `ribogl` (arbitrary name):
```bash
conda env create -n ribogl -f interpret/requirements.yaml
```
2. Download the data from https://zenodo.org/records/12180308 into the `data` subfolder.
3. Extract `RiboGL_Attributions.h5.gz` into `RiboGL_Attributions.h5` using `gzip -d RiboGL_Attributions.h5.gz`. The uncompressed size will be around 43 GB.
4. Run the server:
```bash
conda activate ribogl
python interpret/app.py --port 8050
```
The server will be available at http://localhost:8050/. The port can be changed with the `port` argument.