Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/veb-101/machine-learning-practice
Contains code-works from the Hands on scikit-learn and tensorflow book
https://github.com/veb-101/machine-learning-practice
deep-learning keras machine-learning python3 scikit-learn tensorflow-gpu
Last synced: about 9 hours ago
JSON representation
Contains code-works from the Hands on scikit-learn and tensorflow book
- Host: GitHub
- URL: https://github.com/veb-101/machine-learning-practice
- Owner: veb-101
- License: unlicense
- Created: 2019-08-02T14:18:44.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2020-05-04T19:19:00.000Z (over 4 years ago)
- Last Synced: 2023-03-05T12:33:16.055Z (over 1 year ago)
- Topics: deep-learning, keras, machine-learning, python3, scikit-learn, tensorflow-gpu
- Language: Jupyter Notebook
- Size: 4.5 MB
- Stars: 1
- Watchers: 1
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Machine Learning practice
---
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/veb-101/Machine-Learning-practice/master) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/veb-101/Machine-Learning-practice/blob/master/)
This repository is for my own learning purposes.
Majority of the code in this repository comes from the original repository by [Aurélien Géron](https://github.com/ageron/handson-ml2)| Sr. No. | Chapter | View |
| ------- | ----------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------- |
| 1 | The Machine Learning Landscape | [notebook](https://nbviewer.jupyter.org/github/veb-101/Machine-Learning-practice/blob/master/Chapter%201/The%20Machine%20Learning%20Landscape.ipynb) |
| 2 | End-to-End Machine Learning Project | [notebook](https://nbviewer.jupyter.org/github/veb-101/Machine-Learning-practice/blob/master/Chapter%202/End-to-End%20ML%20Project.ipynb) |
| 3 | Classification | [notebook](https://nbviewer.jupyter.org/github/veb-101/Machine-Learning-practice/blob/master/Chapter%203/Classification.ipynb) |
| 4 | Training Linear Models | [notebook](https://nbviewer.jupyter.org/github/veb-101/Machine-Learning-practice/blob/master/Chapter%204/linear_models.ipynb) |
| 5 | Support Vector Machines | [notebook](https://nbviewer.jupyter.org/github/veb-101/Machine-Learning-practice/blob/master/Chapter%205/support%20vector%20machines.ipynb) |
| 6 | Decision Tree Learning | [notebook](https://nbviewer.jupyter.org/github/veb-101/Machine-Learning-practice/blob/master/Chapter%206/decision_trees.ipynb) |
| 7 | Ensemble Learning | [notebook](https://nbviewer.jupyter.org/github/veb-101/Machine-Learning-practice/blob/master/Chapter%207/Ensemble%20learning.ipynb) |
| 8 | Dimensionality Reduction | [notebook](https://nbviewer.jupyter.org/github/veb-101/Machine-Learning-practice/blob/master/Chapter%208/dim_reduction.ipynb) |
| 9 | Unsupervised Learning | [notebook](https://nbviewer.jupyter.org/github/veb-101/Machine-Learning-practice/blob/master/Chapter%209/unsupervised_learning.ipynb) |