Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/vectorengine/vectorsql
VectorSQL is a free analytics DBMS for IoT & Big Data, compatible with ClickHouse.
https://github.com/vectorengine/vectorsql
clickhouse column-store distributed-database iot olap pipeline reactive stream-processing
Last synced: 2 months ago
JSON representation
VectorSQL is a free analytics DBMS for IoT & Big Data, compatible with ClickHouse.
- Host: GitHub
- URL: https://github.com/vectorengine/vectorsql
- Owner: vectorengine
- License: apache-2.0
- Archived: true
- Created: 2020-01-19T14:11:49.000Z (almost 5 years ago)
- Default Branch: master
- Last Pushed: 2021-10-16T08:44:06.000Z (over 3 years ago)
- Last Synced: 2024-08-01T22:46:08.533Z (6 months ago)
- Topics: clickhouse, column-store, distributed-database, iot, olap, pipeline, reactive, stream-processing
- Language: Go
- Homepage: https://github.com/vectorengine/vectordb
- Size: 1.36 MB
- Stars: 284
- Watchers: 13
- Forks: 53
- Open Issues: 11
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- go-awesome - VectorSQL - DBMS database for IoT and Big Data, similar to ClickHouse (Open source library / Database)
README
**NOTICE: This project have moved to** [**Databend**](https://github.com/datafuselabs/databend)
-----------------
[![Github Actions Status](https://github.com/vectorengine/vectorsql/workflows/VectorSQL%20Build/badge.svg)](https://github.com/vectorengine/vectorsql/actions?query=workflow%3A%22VectorSQL+Build%22)
[![Github Actions Status](https://github.com/vectorengine/vectorsql/workflows/VectorSQL%20Test/badge.svg)](https://github.com/vectorengine/vectorsql/actions?query=workflow%3A%22VectorSQL+Test%22)
[![Github Actions Status](https://github.com/vectorengine/vectorsql/workflows/VectorSQL%20Coverage/badge.svg)](https://github.com/vectorengine/vectorsql/actions?query=workflow%3A%22VectorSQL+Coverage%22)
[![codecov.io](https://codecov.io/gh/vectorengine/vectorsql/branch/master/graph/badge.svg)](https://codecov.io/gh/vectorengine/vectorsql/branch/master)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)VectorSQL is a free analytics DBMS for IoT & Big Data, compatible with ClickHouse.
## Features
* **High Performance**
* **High Scalability**
* **High Reliability**## Server
```
$git clone https://github.com/vectorengine/vectorsql
$cd vectorsql
$make build
$./bin/vectorsql-server -c conf/vectorsql-default.toml
2020/01/27 19:02:39.245654 [DEBUG] Database->Attach Table:system.tables, engine:SYSTEM_TABLES
2020/01/27 19:02:39.245670 [DEBUG] Database->Attach Table:system.databases, engine:SYSTEM_DATABASES
2020/01/27 19:02:39.245680 [INFO] Database->Load Database:system
2020/01/27 19:02:39.245794 [INFO] Listening for connections with native protocol (tcp)::9000
2020/01/27 19:02:39.245806 [INFO] Servers start...
```## Client
* clickhouse-client
```
$clickhouse-client --compression=0
VectorSQL :) SELECT SUM(IF(status!=200, 1, 0)) AS errors, SUM(IF(status=200, 1, 0)) as success, (errors/COUNT(server)) AS error_rate,(success/COUNT(server)) as success_rate, (SUM(response_time)/COUNT(server)) AS load_avg, MIN(response_time), MAX(response_time), path, server FROM logmock(rows->15) GROUP BY server, path HAVING errors>0 ORDER BY server ASC, load_avg DESC;SELECT
SUM(IF(status != 200, 1, 0)) AS errors,
SUM(IF(status = 200, 1, 0)) AS success,
errors / COUNT(server) AS error_rate,
success / COUNT(server) AS success_rate,
SUM(response_time) / COUNT(server) AS load_avg,
MIN(response_time),
MAX(response_time),
path,
server
FROM logmock(rows -> 15)
GROUP BY
server,
path
HAVING errors > 0
ORDER BY
server ASC,
load_avg DESC┌─errors─┬─success─┬─error_rate─┬─success_rate─┬─load_avg─┬─MIN(response_time)─┬─MAX(response_time)─┬─path───┬─server──────┐
│ 2 │ 1 │ 0.6667 │ 0.3333 │ 12 │ 10 │ 13 │ /login │ 192.168.0.1 │
│ 1 │ 5 │ 0.1667 │ 0.8333 │ 11.1667 │ 10 │ 12 │ /index │ 192.168.0.1 │
│ 1 │ 3 │ 0.25 │ 0.75 │ 11.25 │ 10 │ 14 │ /index │ 192.168.0.2 │
│ 1 │ 1 │ 0.5 │ 0.5 │ 11 │ 10 │ 12 │ /login │ 192.168.0.2 │
└────────┴─────────┴────────────┴──────────────┴──────────┴────────────────────┴────────────────────┴────────┴─────────────┘
↓ Progress: 0.00 rows, 0.00 B (0.00 rows/s., 0.00 B/s.)
4 rows in set. Elapsed: 0.005 sec.
```* http-client
```
curl -XPOST http://127.0.0.1:8123 -d "SELECT SUM(IF(status!=200, 1, 0)) AS errors, SUM(IF(status=200, 1, 0)) as success, (errors/COUNT(server)) AS error_rate,(success/COUNT(server)) as success_rate, (SUM(response_time)/COUNT(server)) AS load_avg, MIN(response_time), MAX(response_time), path, server FROM logmock(rows->15) GROUP BY server, path HAVING errors>0 ORDER BY server ASC, load_avg DESC"
2 1 0.6667 0.3333 12.0000 10 13 /login 192.168.0.1
1 5 0.1667 0.8333 11.1667 10 12 /index 192.168.0.1
1 3 0.2500 0.7500 11.2500 10 14 /index 192.168.0.2
1 1 0.5000 0.5000 11.0000 10 12 /login 192.168.0.2
```## Query Language Features
|Query language |Current version|Future versions|Example |
|-------------------------------|---------------|---------------|--------------------------|
|Scans by Value |+ |+ |SELECT a,b |
|Scans by Expression |+ |+ |SELECT IF(a>2,a,b),SUM(a) |
|Filter by Value |+ |+ |WHERE a>10 |
|Filter by Expression |+ |+ |WHERE a>(b+10) |
|Group-Aggregate by Value |+ |+ |GROUP BY a |
|Group-Aggregate by Expression |+ |+ |GROUP BY (a+1) |
|Group-Having by Value |+ |+ |HAVING count_a>2 |
|Group-Having by Expression |+ |+ |HAVING (count_a+1)>2 |
|Order by Value |+ |+ |ORDER BY a desc |
|Order by Expression |+ |+ |ORDER BY (a+b) |
|Window Functions |- |+ | |
|Common Table Expressions |- |+ | |
|Join |- |+ | |## Performance
* Dataset: 10,000,000 (10 Million)
* Hardware: 16vCPUx16G KVM Cloud Instance
* [Benchmark](benchmark)|Query |Cost(second)|
|-------------------------------|---------------|
| SELECT COUNT(id) FROM testdata | 0.269s |
| SELECT COUNT(id) FROM testdata WHERE id!=0 | 0.438s |
| SELECT SUM(data1) FROM testdata | 0.287s |
| SELECT SUM(data1) AS sum, COUNT(data1) AS count, sum/count AS avg FROM testdata | 1.814s |
| SELECT MAX(id), MIN(id) FROM testdata | 0.473s |
| SELECT COUNT(data1) AS count, data1 FROM testdata GROUP BY data1 ORDER BY count DESC LIMIT 10 | 0.728s |
| SELECT email FROM testdata WHERE email like '%[email protected]%' LIMIT 1 | 0.076s |
| SELECT COUNT(email) FROM testdata WHERE email like '%[email protected]%' | 1.470s |
| SELECT data1 AS x, x - 1, x - 2, x - 3, count(data1) AS c FROM testdata GROUP BY x, x - 1, x - 2, x - 3 ORDER BY c DESC LIMIT 10 | 2.396s |## Metrics
http://localhost:8080/debug/metrics