Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/vega/altair
Declarative visualization library for Python
https://github.com/vega/altair
Last synced: 4 days ago
JSON representation
Declarative visualization library for Python
- Host: GitHub
- URL: https://github.com/vega/altair
- Owner: vega
- License: bsd-3-clause
- Created: 2015-09-19T03:14:04.000Z (over 9 years ago)
- Default Branch: main
- Last Pushed: 2025-02-10T14:12:13.000Z (11 days ago)
- Last Synced: 2025-02-10T18:53:02.520Z (11 days ago)
- Language: Python
- Homepage: https://altair-viz.github.io/
- Size: 43.2 MB
- Stars: 9,568
- Watchers: 138
- Forks: 794
- Open Issues: 149
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Code of conduct: CODE_OF_CONDUCT.md
Awesome Lists containing this project
- StarryDivineSky - vega/altair - Altair是一个用于 Python 的声明式统计可视化库,它基于强大的Vega-Lite JSON 规范,提供简单易用的 API,帮助你快速创建美观且有效的可视化图表。你可以在 JupyterLab、Jupyter Notebook、Visual Studio Code 等环境中使用它,并导出为 PNG/SVG 等格式。Vega-Altair 的独特之处在于它不仅支持可视化,还支持交互,例如使用刷选工具过滤散点图并联动更新直方图。 (其他_机器学习与深度学习)
- awesome-production-machine-learning - Vega-Altair - Vega-Altair is a declarative statistical visualization library for Python. (Industry Strength Visualisation)
README
[](https://github.com/vega/altair/actions?query=workflow%3Abuild)
[](https://www.mypy-lang.org)
[](https://joss.theoj.org/papers/10.21105/joss.01057)
[](https://pypi.org/project/altair)**Vega-Altair** is a declarative statistical visualization library for Python. With Vega-Altair, you can spend more time understanding your data and its meaning. Vega-Altair's
API is simple, friendly and consistent and built on top of the powerful
[Vega-Lite](https://github.com/vega/vega-lite) JSON specification. This elegant
simplicity produces beautiful and effective visualizations with a minimal amount of code.*Vega-Altair was originally developed by [Jake Vanderplas](https://github.com/jakevdp) and [Brian
Granger](https://github.com/ellisonbg) in close collaboration with the [UW
Interactive Data Lab](https://idl.cs.washington.edu/).*
*The Vega-Altair open source project is not affiliated with Altair Engineering, Inc.*## Documentation
See [Vega-Altair's Documentation Site](https://altair-viz.github.io) as well as the [Tutorial Notebooks](https://github.com/altair-viz/altair_notebooks). You can
run the notebooks directly in your browser by clicking on one of the following badges:[](https://beta.mybinder.org/v2/gh/altair-viz/altair_notebooks/master)
[](https://colab.research.google.com/github/altair-viz/altair_notebooks/blob/master/notebooks/Index.ipynb)## Example
Here is an example using Vega-Altair to quickly visualize and display a dataset with the native Vega-Lite renderer in the JupyterLab:
```python
import altair as alt# load a simple dataset as a pandas DataFrame
from vega_datasets import data
cars = data.cars()alt.Chart(cars).mark_point().encode(
x='Horsepower',
y='Miles_per_Gallon',
color='Origin',
)
```
One of the unique features of Vega-Altair, inherited from Vega-Lite, is a declarative grammar of not just visualization, but _interaction_.
With a few modifications to the example above we can create a linked histogram that is filtered based on a selection of the scatter plot.```python
import altair as alt
from vega_datasets import datasource = data.cars()
brush = alt.selection_interval()
points = alt.Chart(source).mark_point().encode(
x='Horsepower',
y='Miles_per_Gallon',
color=alt.when(brush).then("Origin").otherwise(alt.value("lightgray"))
).add_params(
brush
)bars = alt.Chart(source).mark_bar().encode(
y='Origin',
color='Origin',
x='count(Origin)'
).transform_filter(
brush
)points & bars
```
## Features
* Carefully-designed, declarative Python API.
* Auto-generated internal Python API that guarantees visualizations are type-checked and
in full conformance with the [Vega-Lite](https://github.com/vega/vega-lite)
specification.
* Display visualizations in JupyterLab, Jupyter Notebook, Visual Studio Code, on GitHub and
[nbviewer](https://nbviewer.jupyter.org/), and many more.
* Export visualizations to various formats such as PNG/SVG images, stand-alone HTML pages and the
[Online Vega-Lite Editor](https://vega.github.io/editor/#/).
* Serialize visualizations as JSON files.## Installation
Vega-Altair can be installed with:
```bash
pip install altair
```If you are using the conda package manager, the equivalent is:
```bash
conda install altair -c conda-forge
```For full installation instructions, please see [the documentation](https://altair-viz.github.io/getting_started/installation.html).
## Getting Help
If you have a question that is not addressed in the documentation,
you can post it on [StackOverflow](https://stackoverflow.com/questions/tagged/altair) using the `altair` tag.
For bugs and feature requests, please open a [Github Issue](https://github.com/vega/altair/issues).## Development
[](https://github.com/astral-sh/uv)
[](https://github.com/astral-sh/ruff)
[](https://github.com/pytest-dev/pytest)For information on how to contribute your developments back to the Vega-Altair repository, see
[`CONTRIBUTING.md`](https://github.com/vega/altair/blob/main/CONTRIBUTING.md)## Citing Vega-Altair
[](https://joss.theoj.org/papers/10.21105/joss.01057)
If you use Vega-Altair in academic work, please consider citing https://joss.theoj.org/papers/10.21105/joss.01057 as
```bib
@article{VanderPlas2018,
doi = {10.21105/joss.01057},
url = {https://doi.org/10.21105/joss.01057},
year = {2018},
publisher = {The Open Journal},
volume = {3},
number = {32},
pages = {1057},
author = {Jacob VanderPlas and Brian Granger and Jeffrey Heer and Dominik Moritz and Kanit Wongsuphasawat and Arvind Satyanarayan and Eitan Lees and Ilia Timofeev and Ben Welsh and Scott Sievert},
title = {Altair: Interactive Statistical Visualizations for Python},
journal = {Journal of Open Source Software}
}
```
Please additionally consider citing the [Vega-Lite](https://vega.github.io/vega-lite/) project, which Vega-Altair is based on: https://dl.acm.org/doi/10.1109/TVCG.2016.2599030```bib
@article{Satyanarayan2017,
author={Satyanarayan, Arvind and Moritz, Dominik and Wongsuphasawat, Kanit and Heer, Jeffrey},
title={Vega-Lite: A Grammar of Interactive Graphics},
journal={IEEE transactions on visualization and computer graphics},
year={2017},
volume={23},
number={1},
pages={341-350},
publisher={IEEE}
}
```